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Abstract

Interactive theorem proving is tackling ever larger formalization and verification projects, and
there is a critical need for theory engineering techniques to support these efforts. One such technique
is effective package management, which has the potential to simplify the development of logical
theories by precisely checking dependencies and promoting re-use. This paper introduces a domain-
specific language for defining composable packages of higher order logic theories, which is designed
to naturally handle the complex dependency structures that often arise in theory development. The
package composition language functions as a module system for theories, and the paper presents
a well-defined semantics for the supported operations. Preliminary tests of the package language
and its toolset have been made by packaging the theories distributed with the HOL Light theorem
prover. This experience is described, leading to some initial theory engineering discussion on the
ideal properties of a reusable theory.

1 Introduction

Interactive theorem proving has grown from toy examples to major formalization and verification projects
in mathematics and computer science. Recent examples include: the 20 man-year verification of the seL4
operating system kernel [17]; the CompCert project, which verified an optimizing compiler from a large
subset of C to PowerPC assembly code [18]; and the Flyspeck project, which aims to mechanize a proof
of the Kepler sphere-packing conjecture [10].

Just as the term software engineering was coined in 1968 [20] to give a name to techniques for
developing increasingly large programs, there is now a need for theory engineering techniques to de-
velop increasingly large proofs (“proving in the large”). One software engineering technique that can
be applied to proof development is effective package management. Modern operating systems bundle
software into packages that carry around a list of their dependencies—these are checked at installation
time to ensure that the system can properly support the package. The same techniques have been ap-
plied to manage Haskell packages [5], which allows much deeper checking at installation time by type
checking new packages in the context of the packages they depend on. Extending this idea to logical
theories offers the promise of complete dependency checking at installation time, by precisely matching
the required theorems to previously installed packages and checking proofs to ensure consistency.

The goal of the OpenTheory project is to transfer the benefits of package management to aid the
development of logical theories.1 Making effective use of package management techniques in logical
theory development will require new tools and techniques for at least the following tasks:

1. Designing theory languages portable across theorem prover implementations.

2. Discovering design techniques for reusable theories.

3. Uploading, installing and upgrading theory packages from online repositories.

4. Building a standard theory library.

1The OpenTheory project homepage is http://gilith.com/research/opentheory
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The approach taken by the OpenTheory project is to uncover the underlying theory engineering issues by
tackling the above tasks for a concrete case study logic: Church’s simple theory of types [8], extended
with Hindley-Milner style type variables (which in the interest of brevity will be simply referred to as
higher order logic in this paper). Higher order logic is a good testing ground for refining theory engi-
neering concepts for two reasons. Firstly, it is a simple logic, so the focus naturally shifts to properties of
the theories rather than the underlying logic. Secondly, the logic is implemented by three interactive the-
orem provers with mature theory libraries formalizing a large collection of concepts from mathematics
and computer science, providing source material to experiment with packaging schemes and dependency
management.

The three theorem provers are HOL Light [11], HOL4 [22] and ProofPower [16], which are all
descended from the LCF theorem prover [9] and share its basic design of building proof tools on top of
a small trusted kernel implementing the primitive inferences of the logic. A theorem prover in the LCF
design can be seen as a compiler from a source language program containing high-level proof steps to
an assembly language program consisting of primitive inferences in the logic. Each of the three theorem
provers uses a different (and extensible) source language for high level proof steps, and there is currently
no better way of transferring theories between them at the source level than manually translating the
theorem statements and creating new high-level proofs for them. However, it is relatively easy as a one-
off task to implement a set of proof rules in one theorem prover that implement the primitive inferences
of another. To continue the compiler analogy, the hardware (logic) of the three theorem provers is the
same, so even though they implement subtly different assembly languages (primitive inferences) they
can simulate each other.2 With these simulation rules in place, representing higher order logic theories
at the level of primitive inferences is portable across theorem provers, and previous work introduced the
article file format for this purpose [13, 14].

An article is a compact representation of a higher order logic theory, consisting of a formal proof that
a set of theorems logically follow from a set of assumptions. The article format was designed to simplify
theory import and export for theorem prover implementations, but these are just two of the operations
that must be supported for a theory to function effectively as a reusable component in logical theory
development. Viewing theories as modules in a programming language, a module system for theories
would ideally support at least the following operations:

• Renaming type operators and constants in theories, either to avoid namespace clashes or to bind
the arguments of a functor theory.

• Forming compound theories by satisfying the assumptions of one theory with the theorems of
others.

• Restricting the exported theorems of a theory.

The main contribution of this paper is a language for constructing compound theories by combining basic
articles, which supports all the above operations with a well-defined semantics. The theory language
forms the core of a domain-specific language for defining composable packages of higher order logic
theories, which is designed to naturally handle the complex dependency structures that often arise in
theory development.

The language for defining composable packages of higher order logic theories is now stable, and tools
for processing packages are included with the OpenTheory toolset.3 Package tools exist for displaying
meta-information, querying dependencies, pretty-printing assumptions and theorems, and compiling to

2The type class extension of Isabelle/HOL [21] makes it a later version of the hardware, so although it can simulate the
assembly language of the others, they cannot simulate it.

3The OpenTheory toolset is available for download at http://gilith.com/software/opentheory
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articles. Preliminary tests of the package language and its toolset have been made by packaging the
theories distributed with the HOL Light theorem prover. This experience is described, including some
initial discussion on what makes a reusable theory.

The remainder of the paper is structured as follows: Section 2 presents the language and semantics for
constructing compound theories; Section 3 extends this to a complete language for defining composable
packages; Section 4 discusses the experience of packaging HOL Light theories; and finally Sections 5–7
examine related work, summarize and consider future directions.

2 Constructing Compound Theories

A theory Γ . ∆ of higher order logic consists of:

1. A set Γ of assumption sequents.

2. A set ∆ of theorem sequents.

3. A formal proof that the theorems in ∆ logically derive from the assumptions in Γ.

A higher order logic theory can be serialized using the article file format; this section shows how com-
pound theories can be constructed by combining basic articles.

2.1 Type Operators and Constants

To promote clarity when reasoning about theory operations, it is sometimes helpful to be explicit about
the type operators and constants that appear in a theory Γ . ∆. Suppose the sequents in Γ (resp. ∆)
contain references to the set t (resp. u) of type operators and the set c (resp. d) of constants. There will be
naturally be a large overlap between the type operators and constants in Γ and ∆, but the ones that only
appear in ∆ are of special interest, being the theory definitions, so let u′ := u− t and d′ := d−c. It is now
possible to annotate the theory Γ . ∆ with its type operators and constants by writing it as the formula

∀t,c. Γ(t,c) =⇒ ∃u′,d′. ∆(t ∪u′,c∪d′) .

This annotated view shows theories to be similar to functors in the ML module system [19], with the
following interpretation: if a set of types t and values c that satisfy the signature Γ is provided as input,
the functor will generate a set of types u′ and values d′ that satisfy the signature ∆. However there are
two significant differences between higher order logic theories and Standard ML functors: the ‘theorem
prover’ in Standard ML is the type checker, and so the signatures are restricted to be type judgments,
whereas theories can specify arbitrary higher order logic properties; and the particular representation of
the types u′ and construction of the values d′ can have a great effect on the performance of the resulting
code, whereas for theories it little matters how the type operators u′ and constants d′ are constructed, so
long as they satisfy their properties ∆.

The annotated view of theories is also useful for extracting the correct side conditions on theory
operations. For example, the (left-biased) conjunction operation

(Γ1 . ∆1)∧ (Γ2 . ∆2) = (Γ1∪ (Γ2−∆1)) . (∆1∪∆2)

on theories is valid only when the two sets of theory definitions are disjoint, which can be verified by
manipulating the formulas of the annotated view. At a critical point the proof requires a step of the form

(∃x. P(x))∧ (∃y. Q(y)) ⇐⇒ ∃x,y. P(x)∧Q(y)

which is valid only if x and y are distinct. Without this side condition it would be possible to create the
definition c = true in one theory and the definition c = false in another, conjoin the two theories, and
then prove true = false.
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2.2 Interpreting Theories

The ability to rename the type operators and constants in a theory is essential to bind a theory to a local
context, apply it as a functor, or just avoid namespace clashes. An interpretation consists of a renaming
function for type operators, and another one for constants. It is possible to apply an interpretation σ

to a variety of different types of object t, but the application is always written tσ . There is an identity
interpretation id that does nothing, and a composition operator · ◦ · that satisfies t(σ ◦ρ) = (tσ)ρ .

The annotated view of theories from Section 2.1 is again used to extract the side conditions from the
theory interpretation operation:

(Γ . ∆)σ = Γσ . ∆σ .

Manipulating the formulas shows that this can succeed only if:

• the theory assumptions and the theory definitions are kept disjoint

tσ ∩u′σ = cσ ∩d′σ = /0 ;

• and there are no collisions between the theory definitions

|u′σ |= |u′| ∧ |d′σ |= |d′| .

Apart from type operators and constants, the only other named objects in a higher order logic theory
are type variables and term variables. The scope of both type and term variables is the sequent, since
free type and term variables in sequents are implicitly universally quantified, and proof rules can be used
to consistently rename them. The scope of type operators and constants is the theory, and interpretations
can be used to consistently rename them. The end result is that theories are nameless: whether a theory
can be applied in a context is oblivious to the particular choice of names that it contains.

2.3 Theory Language

Without further ado, here is the grammar for the theory language:

theory ← article "filename";
| { theory* }
| local theory in theory
| interpret { interpretation* } in theory
| import package-instance;

The article keyword is used to read a theory stored as an article file. The {· · ·} grouping is used to
sequentially compose theories, simulating the standard mode in a theorem prover where assumptions of
theories in the sequence can be satisfied by previously proved theorems. The local keyword is simply
sequential composition of two theories, except that the theorems of the local theory are not exported. The
interpret keyword is used to interpret a theory with a renaming of some type operators and constants,
as described in Section 2.2. Finally, the import keyword imports a previously loaded theory (in the form
of a package-instance , which will be explained in Section 3).

To make this precise, suppose that a theory expression θ is evaluated in a context where the theorem
set Φ is available to satisfy assumptions, and interpretation σ is in effect. The result of the evaluation,
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written JθKΦ,σ , satisfies the following set of structural recursion rules:

Jarticle "f";K
Φ,σ = readArticle Φ σ f

J{ [] }K
Φ,σ = /0 . /0

J{ θ1 :: θ2 }KΦ,σ = let Γ1 . ∆1 = Jθ1KΦ,σ in
let Γ2 . ∆2 = J{ θ2 }KΦ∪∆1,σ

in
Γ1∪Γ2 . ∆1∪∆2

Jlocal θ1 in θ2KΦ,σ = let Γ1 . ∆1 = Jθ1KΦ,σ in
let Γ2 . ∆2 = Jθ2KΦ∪∆1,σ

in
Γ1∪Γ2 . ∆2

Jinterpret { ρ } in θK
Φ,σ = JθK

Φ,σ◦ρ
Jimport p;K

Φ,σ = importPackageInstance p

Setting down the evaluation semantics helps to explain the design of the theory composition lan-
guage. It crucially relies on a readArticle function that can read an article file containing a theory Γ . ∆,
and while running the proof:

• use the interpretation σ to rename type operators and constants that appear; and

• use the theorems in Φ to satisfy assumptions that are made.

If successful,4 this will result in the theory Γσ −Φ . ∆σ . Performing the theory interpretation and
assumption satisfaction while running a proof complicates the implementation of the article reader, but
there is no alternative for theorem provers in the LCF design: the strictly limited functionality of the
logical kernel offers no support for theory operations after the fact.

The semantics of sequential composition { θ1 :: θ2 } is left-biased theory conjunction (discussed in
Section 2.1), and the local version simply forgets the theorems of the local theory.

The interpret keyword is easily handled by composing the interpretations from the context and
argument.

Finally, the import keyword pulls in a previously loaded theory Γ . ∆. No proofs are run in an
import operation, so the current context is ignored and the resulting theory is Γ . ∆.

3 Packaging Theories

The previous section presented a language for constructing theories, and the logical next step is to pack-
age theories for distribution and installation. This section will build on the theory language to present a
complete package language for theories.

3.1 Theory Dependencies

It is expected that theory packages will be browsed by users, and so a desirable feature is that they have
a coherent subject. For example, a theory package defining the trigonometric functions (sin, cos, etc.)
and proving the standard identities (∀θ . sin2

θ +cos2θ = 1, etc.) would be easy for a user to understand,
and therefore to know whether it will help in their theory development.

Unfortunately, the desire to create coherent packages can result in cycles in the package dependency
graph. Figure 1 shows a simple example of how this can occur. Going anti-clockwise from the bottom
left, here is the sequence of definitions and theorems:

4i.e., there are no name clashes as described in Section 2.2.
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numfunction

Definition:
  injective, surjective

Definition:
  natural numbers

Theorem:
  Schroeder-Bernstein

Theorem:
  induction

Figure 1: Example theory dependency graph.

1. The definition of what it means for a function to be injective and surjective (function-def).

2. The construction of the natural number type using the Axiom of Infinity, which refers to the injec-
tive and surjective properties (num-def).

3. Proving that mathematical induction holds for the type of natural numbers (num-induction).

4. Proving the Schroeder-Bernstein theorem, which states that if there is an injective function α→ β ,
and if there is also a surjective function α→ β , then there is a function α→ β that is both injective
and surjective. The proof of this theorem uses mathematical induction (schroeder-bernstein).

The dependency between the definitions and theorems is shown with arrows in Figure 1. The most
coherent split into theory packages is:

• a package called function containing function-def and schroeder-bernstein; and

• a package called num containing num-def and num-induction.

However, this results in a cyclic dependency between the two packages.
This tension between logical dependency and coherent theories occurs whenever a more complex

theory is invoked to prove results of a simpler theory. For another example from the formalization of
mathematics, the real numbers are constructed on top of the natural numbers, but the whole field of
analytic number theory is based on the idea of using real analysis to prove theorems about the natural
numbers.

Going back to the example, one solution would be to split the two packages into four small packages:
function-def; num; num-def; and schroeder-bernstein. There are no cycles in the dependency
graph between these small packages. However, usability is likely to suffer if users have to spend time
looking for related packages. A user working with injective and surjective functions might have never
heard of the Schroeder-Bernstein theorem, and so miss out on the opportunity to simplify a proof.

The solution adopted is to split theory packages to eliminate cycles in the dependency graph, but
permit theory packages to require the existence of other package instances and combine them using the
theory language. This allows the function and num packages to be defined as before, but without a
cyclic dependency. The cost of obtaining cycle-free coherent packages is that there are now six packages
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name: function

version: 1.0

description: Function theory

require function-def {

package: function-def-1.0

}

require schroeder-bernstein {

import: function-def

package: schroeder-bernstein-1.0

}

theory {

import function-def;

import schroeder-bernstein;

}

Figure 2: The function package.

to maintain (both the original two and the split four), which may in time lead to package pollution with
negative consequences for user browsing.

Figure 2 shows how the function package is expressed in the package language. A full description
of the package language will be given in Sections 3.2–3.4, but it might be helpful to see an example first.
The require blocks ensure that instances of the split packages are present, and binds the instances to
names. The import constraint in the schroeder-bernstein block ensures that this package instance
is dependent on the function-def instance. The theory block contains an expression in the theory
language of Section 2.3 that combines the required package instances. In this case the function package
simply re-exports the theorems of the required packages.

3.2 Package Meta-Data

At the top of a package there is a list of tags that serve as package meta-data:

tag ← name: value

The two most important tag names are name and version, the values for which together determine the
full name of the package as name -version . For example, the full name of the example package in
Figure 2 is function-1.0.

3.3 Package Instances

After the package meta-data there is a sequence of package-instance-spec blocks, which specify the
package instances that are assumed to be present, and bind them to package-instance names.

Here is the grammar for a package-instance-spec block:

package-instance-spec ← require package-instance {
import: package-instance∗

interpret: interpretation∗

package: package-name
}
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The package constraint is the full name of the package that this package instance is derived from. The
interpret constraints specify the interpretation that must be applied to the package in this instance,
the import constraints list the package instances that must be used to satisfy the assumptions of this
package instance. In summary, a list of package-instance-specs specifies a connection graph between
theory packages with particular interpretations.

In the example package in Figure 2, the two package-instance-specs specify that two package in-
stances deriving from function-def-1.0 and schroeder-bernstein-1.0 must already be present,
bound to the package-instance names function-def and schroeder-bernstein. The absence of
interpret constraints requires that the identity interpretation must be used to derive the package in-
stances from the packages, and the import constraint requires that the theorems from the function-def
instance are used to satisfy the assumptions of the schroeder-bernstein instance.

In a context where the theorem set Φ is available to satisfy assumptions, and interpretation σ is in
effect, the concrete syntax for package-instance-spec evaluates to the theory⋃

Γi∪Γ . ∆

where:

• the import package-instance names are bound to the theories Γi . ∆i;

• the interpret rules are the interpretation ρ; and

• the package evaluates to the theory Γ . ∆ in a context where the theorem set
⋃

∆i∪Φ is available
to satisfy assumptions, and interpretation ρ ◦σ is in effect (as will be described in Section 3.4).

3.4 Package Language

Putting everything together, here is the grammar for the language of theory packages:

package ← tag∗

package-instance-spec∗

theory { theory }

In a context where the theorem set Φ is available to satisfy assumptions, and interpretation σ is in effect,
the concrete syntax for package is evaluated to a theory in two steps:

1. Use the same context to evaluate the package-instance-specs and bind the resulting theories to
package-instance names, as described in Section 3.3.

2. Use the same context to evaluate the theory expression in the theory block, as described in Sec-
tion 2.3. The importPackageInstance function looks up its argument package-instance name in
the binding created in the first step, and returns the corresponding theory.

4 Packaging HOL Light Theories

To test the expressivity of the theory package language and the practicality of its toolset, an experiment
was performed to package the theorems distributed with the HOL Light theorem prover [11].5 HOL
Light provides a good test of a theory package language, because it has no (official) theory infrastructure.
Instead there is an OCaml file hol.ml, which contains a long sequence of let bindings for theorems and
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name: hol-light-trivia-one-def

version: 2009.8.24

description: HOL Light definition of the unit type.

theory { article "trivia-one-def.art"; }

Figure 3: A package wrapping a HOL Light theory chunk.

proof tools built upon the logical kernel. Executing the file proves all the theorems, some 6,336 of them,
and the resulting proof consists of 766,421 primitive inferences (with maximal sub-proof sharing).

The starting point for a packaging HOL Light theorems is given by the structure of hol.ml, the
body of which consists of a sequence of loads "t.ml";; directives, where each t.ml is an unofficial
theory containing a coherent set of definitions and theorems (and associated proof tools). Previous work
reported on converting each t.ml file into a proof article t.art [13], which can be lifted to a package as
shown in Figure 3. This experiment used these packages, and goes further by splitting an initial prefix of
the t.ml files into multiple proof article chunks to investigate the potential of using the package language
to assemble them into reusable theory packages.

4.1 Splitting HOL Light Theories

Just looking at the theories that result from the t.ml files, the first obstacle to creating reusable theories
comes from the use of pro forma theorems: special purpose theorems designed to speed up proof tools,
and clearly not intended for human consumption. From a theory engineering perspective, pro forma the-
orems pollute a clean theory interface, but they are necessary to support any use of their associated proof
tool in a later theory. A promising approach to a long term solution is the lazy theorem infrastructure
of Boulton[4], where the pro forma theorems would be proved once inside each theory that used the
associated proof tool; to avoid their pollution in the present experiment the pro forma theorems for each
theory were split off into their own sub-theory.

In principle, the free form of OCaml bindings in HOL Light allows arbitrary intertwining of theory
dependencies of the kind discussed in Section 3.1, but in fact this was rarely observed. In this limited
experiment, there was only one occasion when the degree of intertwining prevented a natural splitting
into theories. It occurred because all of the arithmetic operations are defined in terms of numerals, but
the definition of the numerals used the addition operation, so after the numerals are defined the definition
of addition is rewritten to use the numerals. This interdependency prevented a clean split into a theory of
addition and a theory of numerals; the solution taken was to change the HOL Light source to define the
numerals directly using primitive recursion, and then define addition using numerals.

4.2 Assembling Reusable Theories

Once the HOL Light theories have been split into chunks, the package language can be used to assemble
them into reusable theories. For example, the package shown in Figure 3 covers the raw HOL Light
theory chunk that constructs the unit type, and evaluates to the theory shown in Figure 4. This theory
suffers from two main drawbacks from a reusability point of view:

• many of the assumptions are pro forma theorems specific to HOL Light proof tools; and

5This experiment used HOL Light version 2.20++, snapshot release on 24 August 2009. HOL Light is available for
download at http://www.cl.cam.ac.uk/~jrh13/hol-light.
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input-types: -> bool

input-consts: ! /\ = ? T select

assumed:

|- T

{.} |- (!) P

{.} |- (?) P

{..} |- p /\ q

|- t = (t = T)

|- (?) = \P. P ((select) P)

defined-types: unit

defined-consts: one one_ABS one_REP

thms:

|- ?b. b

|- one = select x. T

|- (!a. one_ABS (one_REP a) = a) /\

!r. r = (one_REP (one_ABS r) = r)

Figure 4: A raw HOL Light theory chunk.

name: unit-def

version: 1.0

description: Definition of the unit type

require hol-light-thm {

package: hol-light-thm-2009.8.24

}

require hol-light-trivia-one-def {

import: hol-light-thm

package: hol-light-trivia-one-def-2009.8.24

}

require hol-light-trivia-one-alt {

import: hol-light-thm

import: hol-light-trivia-one-def

package: hol-light-trivia-one-alt-2009.8.24

}

theory { import hol-light-trivia-one-alt; }

Figure 5: A reusable theory package.

• the theorems contain too much detail on the construction of the unit type, rather than its interface.

Suppose the proofs of the pro forma theorems are collected into a package called hol-light-thm,
and a minimal theorem interface for the unit type is derived from its definition in a package called
hol-light-trivia-one-alt. The package shown in Figure 5 assembles these HOL Light theory
chunks into the reusable theory shown in Figure 6. This theory also defines the unit type and its single
element, but contains no pro forma theorems in its assumptions, just standard definitions of boolean
operators. Also, no details of the construction leak through to its theorems, just a minimal interface of
its defining property.
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input-types: -> bool

input-consts: ! /\ = ==> ? T select

assumed:

|- !t. (\x. t x) = t

|- T = ((\p. p) = \p. p)

|- (!) = \P. P = \x. T

|- (==>) = \p q. (p /\ q) = p

|- !P x. P x ==> P ((select) P)

|- (/\) = \p q. (\f. f p q) = \f. f T T

|- (?) = \P. !q. (!x. P x ==> q) ==> q

defined-types: unit

defined-consts: one

thms:

|- !v. v = one

Figure 6: A reusable theory.

5 Related Work

Recording and replaying proofs from LCF theorem provers is not new: Wong’s pioneering Recording
and checking HOL proofs in 1995 appears to be the first [27]. More recently, Obua and Skalberg [23]
instrumented HOL4 and HOL Light to export theories in XML format that could be imported into the
Isabelle/HOL theorem prover. The present work differs from this line of proof recording work by its
focus on the theory as the central concept, independent of any particular theorem prover implementation.

From this point of view, the most related work is the AWE project [3], which builds on the explicit
proof terms in Isabelle [2]. Though tied to one theorem prover, it nevertheless focuses on the theory
as the central concept, and has developed sophisticated mechanisms for theory interpretation based on
rewriting proof terms. The present work differs from AWE by being theorem prover independent, and
also by its technique of processing proofs one step at a time rather than requiring the whole proof to be
in memory, which may allow it to scale up more effectively.

Many theorem provers implement a theory infrastructure that offers some of the functionality of
a module system. ProofPower has a sophisticated system for building and navigating a hierarchy of
theories which contain both logical data and information for tools such as parsers, pretty printers and
proof tools [16]. Locales offer the functionality of nested modules, and these were first implemented in
the Isabelle theorem prover [15] at the granularity of theorems and later refined to structured proofs [1]. If
theories are modules, then theory interpretations are functors, and these are implemented in the EVES [6],
IMPS [7], PVS [24] and Specware [26] theorem provers. The novel contribution of the present work is
demonstrating how a natural collection of theory operators can be soundly integrated with a higher order
logic theorem prover in the LCF design.

Another approach to higher order logic theory operations is to extend the logic so that theories can be
directly represented with theorems [25, 12]. The goal of the present work is to implement a theory infras-
tructure on top of the existing logic, but extending the logic has the significant advantage of supporting
theory operations without replaying proofs.

6 Summary

This paper introduced a domain-specific language for defining composable packages of higher order logic
theories, designed to support the development of coherent theory packages with cycle-free dependencies.
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The package composition language functions as a module system for theories, with a well-defined se-
mantics for the supported operations.

Preliminary tests packaging the theories distributed with the HOL Light theorem prover gave promis-
ing results for expressivity of the package language and practicality of the toolset on a real-world set of
theories.

The development of the package composition language and the experimentation work revealed some
desirable properties of a reusable theory package:

• a clear topic (e.g., trigonometric functions);

• assumptions that are satisfied by the theorems of other reusable theory packages;

• a carefully chosen set of theorems, presenting an abstract interface to the theory (hiding construc-
tion details).

Although derived from experimenting with a particular case study of higher order logic theories, these
properties are structural and thus apply to a general class of logical theories.

7 Future Work

There is scope for future work in developing and extending the theory operations. For example, theories
would have more power as functors if constants could be interpreted as arbitrary terms (with no free
variables or additional type variables), instead of simply renaming them to other constants.

It would also be interesting to investigate design techniques for package sets. For example, does it
make sense to put theorem prover specific pro forma theorems into a separate package, or should pro
forma theorems be proved as needed in proof articles? This is the design choice between dynamic and
static linking of theories. For an individual theory it makes sense to statically link to eliminate unused
pro forma theorems: for the reusable unit theory in Figure 5, statically linking hol-light-thm results
in a proof requiring 585 primitive inferences, while dynamically linking requires 9,055. However, for
a set of packages requiring the same pro forma theorems, dynamically linking might result in smaller
proofs and thus more efficient package management.

Now that the package format has been developed, the hope is that the full benefits of package man-
agement can be transferred to theory development, including searchable repositories of packages, and
installation with automatic dependency resolution. The next challenge is to build enough package man-
agement infrastructure for people to contribute to building a standard library of reusable theory packages.
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