
Using Term Rewriting to
Solve Bit-Vector Arithmetic Problems

(Poster Presentation)

Iago Abal1, Alcino Cunha1, Joe Hurd2, and Jorge Sousa Pinto1

1 HASLab / INESC TEC & Universidade do Minho, Braga, Portugal
2 Galois, Inc., Portland, OR, USA

Among many theories supported by SMT solvers, the theory of finite-precision
bit-vector arithmetic is one of the most useful, for both hardware and soft-
ware systems verification. This theory is also particularly useful for some spe-
cific domains such as cryptography, in which algorithms are naturally expressed
in terms of bit-vectors. Cryptol is an example of a domain-specific language
(DSL) and toolset for cryptography developed by Galois, Inc.; providing an
SMT backend that relies on bit-vector decision procedures to certify the cor-
rectness of cryptographic specifications [3]. Most of these decision procedures
use bit-blasting to reduce a bit-vector problem into pure propositional SAT. Un-
fortunately bit-blasting does not scale very well, especially in the presence of
operators like multiplication or division. For example, the equality x2

[n] − 1[n] =

(x[n] + 1[n]) × (x[n] − 1[n]) is a simple consequence of distributivity and asso-
ciativity laws; but even for small values of n the bit-level representation of this
formula is so huge that it is intractable by current SAT solvers. The main rea-
son for this is the loss of high-level algebraic structure present in the origi-
nal decision problem. The point here is that one can exploit algebraic proper-
ties concerning the domain of bit-vectors to rewrite this problem into an eq-
uisatisfiable, but computationally less hard, problem. For instance, the above
equality can be proved valid as follows (subscripts are omitted for clarity):
x2 − 1 = (x + 1) × (x − 1) ≡ {distributivity × 3; associativity} x2 − 1 =
x2+x−x−1 ≡ {inverse; right identity} x2−1 = x2−1 ≡ {reflexivity} true.
Modern SMT solvers already include a simplification phase that performs some
rewriting on the input problem prior to bit-blasting [4]. Nevertheless, SMT
solvers have to deal with a wide range of application domains, and hence the set
of rewrite rules employed for simplification inevitably excludes many rules that
are useful for some particular domains but may be inconvenient for others.

The present work was motivated by the difficulties reported by the Galois
Cryptol team in achieving automatic equivalence checking for public-key cryp-
tography (PKC). PKC is particularly hard because it involves multiplication
and modular exponentiation on long bit-vectors. Hence, the bit-level represen-
tation of any PKC algorithm is usually so huge that such equivalence problems
are too hard for current SAT solvers, unless a significant amount of rewriting
is performed before bit-blasting. SMT solvers employing high-level rewriting-
based techniques have been shown to be promising, but they are still insuf-
ficiently powerful to handle hard problems, such as those resulting from PKC.



This problem may be addressed by combining custom rewrite patterns, somehow
encapsulating domain-specific proof strategies, with standard bit-vector decision
procedures. Our first attempt consisted in extending SMT specifications with
algebraic properties provided in the form of quantified formulas, expecting the
SMT solver to use them as rewrite rules. Unfortunately, we have found that most
of the times SMT solvers do not use these rules effectively, and even become quite
unpredictable in the presence of universal quantifiers. After this failed attempt,
we prototyped a rewriting system in Maude [1] that focuses on simplifying PKC
equivalence problems. Employing a set of 200 handcrafted rewrite rules and a
very simple rewriting strategy enabled us to achieve quite promising results. For
instance, this system proved the correctness of a 16-bit peasant multiplier and
SHA-1 implementations in a few seconds, while the 3.2 version of Z3 [2] times out
(16 hours) for the peasant case and quickly runs out of memory (2 GB) solving
the SHA-1 one. Using this rewriting system as a preprocessing step for Z3 we
also achieved good speedups for some equivalence problems, such as a speedup
of 2 for an 8-bit modular exponentiation algorithm.

Even though there is still considerable work to be done in order to reach a
reasonable degree of automation for PKC equivalence checking, the above results
show the potential of the term-rewriting approach. In the same way that proof
assistants allow defining custom tactics to encapsulate specific proof techniques,
our intention is to encode those proof tactics as rewrite patterns in the context
of SMT solving. This allows simplifications that drastically reduce the size of the
input problem before bit-blasting, leading to better overall performance. Ideally,
SMT solvers should allow easy customization of their solving strategies with such
rules —we are aware of some recent work in this direction. It is worth noting
that we are not relying on complex combinations of rewriting strategies, which
would make our approach more fragile and less scalable. Finally, Maude turned
out to be a good platform for experimentation, but it significantly restricts the
strategies that we could employ and presents some limitations with respect to
achieving perfect subterm sharing. Thus we are presently working on a frame-
work to specify custom rewriting-based simplifications for fixed-size bit-vector
arithmetic, that should allow us to overtake the above limitations.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and
Applications. pp. 76–87. No. 2706 in LNCS, Springer-Verlag (June 2003)

2. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 337–340. Springer-Verlag, Berlin, Heidelberg (2008)

3. Erkök, L., Matthews, J.: Pragmatic equivalence and safety checking in Cryptol.
In: Proceedings of the 3rd workshop on Programming Languages meets Program
Verification. pp. 73–82. PLPV ’09, ACM, New York, NY, USA (2008)

4. Franzen, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. Ph.D. thesis, University of Trento (March 2010)


