
Formal Verification of
Probabilistic Algorithms

Joe Hurd

Trinity College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

2

Abstract

This thesis shows how probabilistic algorithms can be formally verified using a mechanical
theorem prover.

We begin with an extensive foundational development of probability, creating a higher-
order logic formalization of mathematical measure theory. This allows the definition of the
probability space we use to model a random bit generator, which informally is a stream
of coin-flips, or technically an infinite sequence of IID Bernoulli(1

2
) random variables.

Probabilistic programs are modelled using the state-transformer monad familiar from
functional programming, where the random bit generator is passed around in the com-
putation. Functions remove random bits from the generator to perform their calculation,
and then pass back the changed random bit generator with the result.

Our probability space modelling the random bit generator allows us to give precise
probabilistic specifications of such programs, and then verify them in the theorem prover.

We also develop technical support designed to expedite verification: probabilistic quan-
tifiers; a compositional property subsuming measurability and independence; a probabilis-
tic while loop together with a formal concept of termination with probability 1. We also
introduce a technique for reducing properties of a probabilistic while loop to properties of
programs that are guaranteed to terminate: these can then be established using induction
and standard methods of program correctness.

We demonstrate the formal framework with some example probabilistic programs:
sampling algorithms for four probability distributions; some optimal procedures for gen-
erating dice rolls from coin flips; the symmetric simple random walk. In addition, we
verify the Miller-Rabin primality test, a well-known and commercially used probabilis-
tic algorithm. Our fundamental perspective allows us to define a version with strong
properties, which we can execute in the logic to prove compositeness of numbers.

3

4

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration.

The dissertation is not substantially the same as any I have submitted for a degree
or diploma or any other qualification at any other university. Further, no part of the
dissertation has already been or is being concurrently submitted for any such degree,
diploma or other qualification.

The dissertation does not exceed 60,000 words, including tables, footnotes and bibli-
ography.

Joe Hurd, December 2001.

5

6

Contents

1 Introduction 13
1.1 History of Formalization . 13
1.2 Introduction to Theorem Provers . 14
1.3 Formal Methods and Probability . 15
1.4 Formalizing Probabilistic Programs . 16
1.5 Example Probabilistic Programs . 19
1.6 The Miller-Rabin Primality Test . 20
1.7 Automatic Proof Tools . 20
1.8 How to Read this Thesis . 22

2 Formalized Probability Theory 25
2.1 Introduction . 25

2.1.1 The Need for Measure Theory . 25
2.1.2 How to Create a Measure . 27

2.2 Measure Theory . 28
2.2.1 Measure Spaces . 29
2.2.2 Carathéodory’s Extension Theorem 32
2.2.3 Functions between Measure Spaces 33
2.2.4 Probability Spaces . 35

2.3 Bernoulli(1
2
) Sequences: Algebra . 36

2.3.1 Infinite Sequence Theory . 37
2.3.2 The Algebra Generated by Prefix Sets 38
2.3.3 Canonical Forms . 39
2.3.4 Properties of (A, µ) . 41

2.4 Bernoulli(1
2
) Sequences: Probability Space 42

2.4.1 The Need for σ-algebras . 42
2.4.2 Definition of the Probability Space 43
2.4.3 Construction of a Non-Measurable Set 45
2.4.4 Probabilistic Quantifiers . 46

2.5 Concluding Remarks . 48

3 Verifying Probabilistic Algorithms 51
3.1 Introduction . 51

3.1.1 Motivating Probabilistic Algorithms 51
3.1.2 Verifying Probabilistic Algorithms in Practice 53
3.1.3 A Notation for Probabilistic Programs 55

7

3.1.4 Probabilistic Termination . 56
3.2 Measurability and Independence . 57

3.2.1 Measurability . 57
3.2.2 Function Independence . 59
3.2.3 Strong Function Independence . 60

3.3 Probabilistic Termination . 63
3.3.1 Probabilistic ‘While’ Loops . 63
3.3.2 Probabilistic Termination Conditions 66
3.3.3 Proof Techniques for Probabilistic While Loops 68
3.3.4 Probabilistic ‘Until’ Loops . 70

3.4 Execution in the Logic of Probabilistic Programs 71
3.4.1 Introduction to Execution in the Logic 71
3.4.2 Formalizing a Pseudo-random Bit Sequence 72
3.4.3 Execution as an Automatic Proof Procedure 73

3.5 Concluding Remarks . 74

4 Example Probabilistic Programs 77
4.1 Introduction . 77
4.2 The Binomial(n, 1

2
) Distribution . 79

4.3 The Uniform(n) Distribution . 80
4.4 The Geometric(1

2
) Distribution . 83

4.5 The Bernoulli(p) Distribution . 84
4.6 Optimal Dice . 85
4.7 The Symmetric Simple Random Walk . 89
4.8 Concluding Remarks . 90

5 Verification of the Miller-Rabin Primality Test 93
5.1 Introduction . 93

5.1.1 The Miller-Rabin Probabilistic Primality Test 93
5.1.2 The HOL Verification . 94

5.2 Computational Number Theory . 95
5.2.1 Definitions . 95
5.2.2 Underlying Mathematics . 96
5.2.3 Formalization . 97

5.3 Probability Theory . 100
5.3.1 Guaranteed Termination . 100
5.3.2 Definition of the Miller-Rabin Test 101
5.3.3 A Compositeness Prover . 102

5.4 Extraction to Standard ML . 102
5.4.1 Random Bits . 103
5.4.2 Arbitrarily Large Natural Numbers 104
5.4.3 Extracting from HOL to ML . 104
5.4.4 Testing . 105

5.5 Concluding Remarks . 107

6 Summary 109
6.1 Future Work . 110

8

A Higher-order Logic and the HOL Theorem Prover 113
A.1 Terms and Types . 113
A.2 Theorems . 114

B Predicate Set Prover 117
B.1 Introduction . 117

B.1.1 An Introduction to Predicate Subtyping 117
B.1.2 Simulating Predicate Subtyping in HOL 118

B.2 The Formalism . 119
B.2.1 Subtypes . 119
B.2.2 Subtype Constructors . 120
B.2.3 Subtype Rules . 121
B.2.4 Subtypes of Constants . 122
B.2.5 Subtype Judgements . 123
B.2.6 Subtype Derivation Algorithm . 124

B.3 Subtype-checking in HOL . 125
B.3.1 Debugging Specifications . 125
B.3.2 Logical Limits . 126

B.4 Predicate Set Prover and Applications . 127
B.4.1 Predicate Set Prover . 127
B.4.2 Proving Conditions During Rewriting 128

B.5 Concluding Remarks . 129

C The HOL Probability Theories (Abridged) 131
C.1 measure Theory . 131
C.2 probability Theory . 136
C.3 prob dice Theory . 139

D Miller-Rabin Primality Test Extracted to Standard ML 143
D.1 HOL miller rabin ml Theory . 143
D.2 ML Support Modules . 145

D.2.1 HolStream Signature . 145
D.2.2 RandomBits Signature . 145
D.2.3 HolNum Signature . 145

D.3 ML Miller-Rabin . 146
D.3.1 HolMiller.sml Structure . 146

9

10

Acknowledgements

I thank Mike Gordon for his critical advice and encouragement over the whole of my
Ph.D. His door was always open, and the quality of this work has benefitted enormously
from his supervision. Konrad Slind also gave generously of his time to help me with
hol98 and many other aspects of theorem proving: he has practically been a second Ph.D.
supervisor.

The automated reasoning group in Cambridge has provided an intellectually stimu-
lating and especially friendly climate in which to discuss research. Special mentions go to
Michael Norrish for theorem proving know-how, Mark Staples for the idea of formalizing
probability theory, Ken Friis Larsen for ML advice, and Daryl Stewart for many discus-
sions. John Harrison also provided much theorem proving information by email, including
specific help with my research projects. On the mathematical front, David Preiss gave
me some valuable help with measure theory, Thomas Forster taught me many pieces of
logic and set theory over a cup of tea, and Des Sheiham has always been happy to discuss
whatever mathematics was on my mind.

This research was generously funded by the EPSRC award 98318027 and a grant from
the Isaac Newton Trust. I received additional travel money to attend conferences from
the University of Cambridge Computer Laboratory, Trinity College and the TPHOLs
2000 conference. Mike Holcombe’s Verification and Testing group at Sheffield University
Department of Computer Science kindly provided bench space and a computer account
for my visits in the 2000–2001 academic year, and Alan Bundy’s group at the University
of Edinburgh made me feel very welcome when I gave a talk there.

Mike Gordon, Konrad Slind, Judita Preiss, Michael Norrish and Des Sheiham carefully
proof-read versions of this thesis, and between them eliminated a large number of lurking
mistakes.

My family have all provided a great deal of encouragement over the years, and sup-
ported me in my academic studies. Finally, I met Judita at the very beginning of my
Ph.D; she has been with me through it all and without her this thesis would not have
been possible.

11

12

Chapter 1

Introduction

We begin by briefly surveying the history of formalization, introducing mechanical theorem
provers and showing their application to software engineering. A gap is identified in the
current practice of verifying programs in a theorem prover, namely the ability to model
programs that make use of a random number generator in their operation. This introduces
our formalization of probability theory in higher-order logic, which we use to prove the
correctness of some probabilistic algorithms in the HOL theorem prover.

1.1 History of Formalization

It is a remarkable fact that reasoning can be modelled by performing purely syntactic
manipulations inside a formal language. A formal language used for this purpose is called
a logic, and over the centuries many logics have been created with the purpose of capturing
one class of real-world truths or another. In Elements, Euclid (circa 300B.C.) defined a
logic allowing the rigorous formalization of a large body of geometric truths, while the
propositional logic of Boole (1847) carves out a class of truths that are highly relevant to
electronic circuit design. The modal logic of Lewis (1918) has been used to reason about
diverse computer science properties, and more recently Burrows, Abadi, and Needham
(1990) developed the BAN logic to model the beliefs of participants engaged in security
protocols.

An intellectual motivation for modelling reasoning in logic is the desire for consistency.
If a system of reasoning can be shown to reduce in principle to manipulations in a consis-
tent logic, then the system of reasoning must be consistent too. It is for this reason that
Hilbert’s programme aimed to create a consistent logic capturing mathematical truth,
providing a solid foundation for mathematics just as Euclid had for geometry.1 This
project is tackled head-on in the three volumes of Principia Mathematica, a monumental
work written over 10 years by Whitehead and Russell (1910). A logic is defined that does
not suffer from known inconsistency traps, and (in pain-staking detail) the concepts and
theorems of mathematics are reduced to syntactic manipulation. Managing the morass
of logical detail that formalization generates is no small feat, and indeed in his autobiog-
raphy Russell (1968) said of the enterprise: “my intellect never quite recovered from the

1Hilbert actually wanted a consistent logic capturing the whole of mathematical truth, but this lofty
goal turns out to be unobtainable. The incompleteness theorems of Gödel (1931) show that no consistent
formal system can capture all the truths of number theory, let alone the whole of mathematics.

13

14 CHAPTER 1. INTRODUCTION

strain.”
A second intellectual motivation to model reasoning in logic is that syntactic manipu-

lation can perform “reasoning almost mechanically by the eye, which otherwise would call
into play the higher faculties of the brain”, as put by Whitehead (1911). In this respect
formalization can be regarded as a novel system of mathematical notation, abstracting
sophisticated reasoning steps by the shuffling of symbols written in a suitable syntax. As
Whitehead goes on to say: “Civilisation advances by extending the number of important
operations which can be performed without thinking about them.”

1.2 Introduction to Theorem Provers

As argued by de Bruijn (1970), Trybulec and Blair (1985), Boyer et al. (1994) and many
others (a cogent summary is given by Harrison (1996a)), computers can play an important
role in assisting the process of formalization. Proof assistants can help with book-keeping
when the logical details are overwhelming, and automatic theorem provers can perform
speedy mechanical proof search in the logic when the problem has been sufficiently broken
down. An interactive theorem prover implements the axioms and rules of inference of a
logic, and generally comes with a proof assistant and many automatic procedures for
proving different types of goals.

A design philosophy of Milner (1978) developed for the Edinburgh LCF project (Gor-
don, Milner, and Wadsworth, 1979) allows the creation of highly flexible theorem provers
that correctly implement any logic. The distinguishing feature of theorem provers in
the ‘LCF style’ is a small logical kernel that contains all the code that must be trusted
to ensure that wrong theorems are not created. Arbitrary programs may be written to
automate common patterns of reasoning, but every theorem must eventually be created
from pre-existing theorems by the scrupulous logical kernel, and in this way soundness is
assured.

The logical kernel defines a type containing logical terms, and an abstract type con-
taining logical theorems. An abstract type may only be accessed through its interface,
denying direct access to the internal representation. Terms may be constructed and de-
structed at will, and similarly theorems may be destructed to give their underlying terms
(i.e., hypotheses and conclusion). However, there is a strict control on the creation of
theorems, and only the following methods can do this:

• For every axiom of the logic, a theorem value that represents this axiom is available.

• For every rule of inference of the logic having the form

` φ1 ` φ2 · · · ` φn

` φ

a function is available that takes hypothesis theorems in the required form and
produces a conclusion theorem.

Since the type of theorems is abstract, a strongly typed programming language will ensure
that theorems may only be created using these methods: precisely the valid theorems of
the logic.

1.3. FORMAL METHODS AND PROBABILITY 15

The HOL theorem prover, developed in Cambridge by Gordon (1988), continues the
LCF tradition. It implements higher-order logic, extending the simple type theory of
Church (1940) with Hindley-Milner polymorphism (Milner, 1978). Many proof assistants
and automatic proof procedures have been developed in HOL over the years, supporting
the formalization of various mathematical theories including sets, natural numbers, groups
and real numbers. An international initiative called the QED project (Anonymous, 1994)
aims to formalize all of mathematics in theorem provers, and work in HOL has contributed
to this endeavour.

As well as mathematics, it is also possible to formalize computer science designs in
the theorem prover, and then prove that the formalized design satisfies a mathematical
specification. As a simple example of this, a hardware circuit may be formalized in
the logic, and a theorem may be proved of the form “for any 64-bit inputs a, b to the
circuit, the 128-bit output c will be the numerical product of a and b.” This is formal
verification, and is now used in the chip design industry to spot errors before a costly
fabrication process (Colwell and Brennan, 2000). Formal verification has successfully been
applied to many areas of design, including hardware circuits (Curzon, 1994), programming
languages (Norrish, 1998), security protocols (Paulson, 1999) and software (Harrison,
1997).

In addition to the intellectual benefits of formalizing mathematics in logic, formal veri-
fication provides a practical motivation: to build up the mathematical language necessary
to express design specifications. These same mathematical theories can then be re-used
to verify that the designs satisfy their specification, a task that may require considerable
effort. For example, in Chapter 5 we shall meet a function witness that takes two nat-
ural numbers and returns true or false. However, expressing the specification of witness
requires a theory of sets, and the subsequent verification involves formalizing a significant
amount of group theory.

1.3 Formal Methods and Probability

Theorem provers can be used to formalize software in logic and reason about it, even
proving that a program satisfies a mathematical specification. An early advocate of
this was Turing (1949), and since then it has become a recognized approach to software
engineering called formal methods. Much research effort is currently being spent on
developing the formalisms that are needed to apply formal methods to new classes of
programs, such as object-oriented software (Huisman, 2001), or software distributed across
a network (Vos, 2000; Wansbrough et al., 2001).

One such class is probabilistic programs, i.e., programs that make use of a random
number generator in their operation. Probabilistic programs can be very hard to test
using conventional techniques. As a simple example, consider the case of a program dice
supposed to output a sequence of standard dice throws. Suppose the first 20 observed
outputs of dice are as follows:

4, 4, 4, 5, 3, 2, 1, 5, 6, 4, 2, 4, 5, 3, 3, 4, 5, 6, 1, 1, . . .

Is dice operating correctly? On the face of it, we might answer yes, since the output
sequence certainly looks random. We can make this scientific by defining a statistic—such

16 CHAPTER 1. INTRODUCTION

as the average of the first 20 throws—and then comparing how much the given sequence
differs from the expected result. We would expect an average of 31

2
from a perfect dice,

but in our example the average of these 20 values from dice is 33
5
: a deviation of 1

10
. A

numerical computation reveals that 85% of all sequences that might result from a perfect
dice would have a deviation of at least 1

10
, and so this single test gives us a confidence of

15% that the program dice is incorrect.
This kind of statistical result is an inherent limitation of black-box testing. In theory,

with enough output either the confidence will increase to one or else decrease to zero, but
the burden of numerical computation may impose a practical limit before an acceptable
level of certainty is reached. In contrast, formal methods promise the ability to prove
rigorously that the program satisfies a probabilistic specification, by reasoning directly
with the program.2 To do this, we need to be able to give a precise logical meaning
to probabilistic programs—a formal semantics—so that a probabilistic program f̂ can be
represented as a logical term f . Since specifications (probabilistic or not) are usually writ-
ten as logical predicates, the problem of verifying that a program f̂ satisfies a specification
P is reduced to finding a proof of the formula P (f).

Formalizing the semantics of probabilistic programs is a research area that has been
tackled many times, beginning with a seminal paper by Kozen (1979). However, it is not a
straightforward task to pick up one of these semantics and formalize it in a theorem prover
(and indeed, has not been attempted). Sometimes sophisticated mathematical theories are
used in semantics of probabilistic programs (e.g., Jones (1990) extends domain theory),
but the formalization of such sophisticated mathematical theories in a theorem prover
is a difficult research topic in itself. Other times a fresh logic is created specifically for
the task of modelling probabilistic programs (e.g., Feldman and Harel (1984) introduce
probabilistic dynamic logic), but this makes it difficult to use the theories and proof tools
that are available in standard theorem provers.

Therefore, our philosophy is to develop the semantics of probabilistic programs within
a conservative extension of higher-order, taking the opportunity wherever possible to build
upon existing work. This approach greatly speeds up our development, allowing us to
take the work further than would have been possible starting from scratch. In addition,
our work then becomes available to others working within higher-order logic. Since the
inception of the HOL system, this kind of reciprocation has been practiced by many
users. As a result, there are now many theories, formalizations and automatic proof tools
available for newcomers to use in their own projects.

1.4 Formalizing Probabilistic Programs

In Chapters 2 and 3 we present a simple modelling of probabilistic programs in higher-
order logic, in which we can specify and verify any program equipped with a source of
random bits. In the language of probability theory, these random bits are assumed to be
independent, identically distributed (IID) Bernoulli(1

2
) random variables (as defined, for

2In an interesting approach that combines both formal methods and testing, Monniaux (2001) has
recently shown how abstract interpretation can be used to calculate the confidence bounds of black-box
testing.

1.4. FORMALIZING PROBABILISTIC PROGRAMS 17

example, in DeGroot (1989, page 145)).3 Suppose we have a probabilistic ‘function’

f̂ : α→ β

that takes as input an element of type α, and uses a random number generator to calculate
a result of type β. Given the specification

B : α× β → B

for f̂ as a predicate4 on pairs of elements from α and β, say a particular function applica-
tion f̂(a) satisfies the specification if B(a, f̂(a)) is true. Of course, since f̂ is probabilistic,
the application f̂(a) may meet the specification on one instance and fail it on another.5

Our approach is to model f̂ with a higher-order logic function6

f : α→ B∞ → β × B∞

which explicitly takes as input a sequence s : B∞ of random bits in addition to an
argument a : α, uses some of the random bits in a calculation exactly mirroring f̂(a), and
then passes back a sequence of ‘unused’ bits with the result.

Mathematical measure theory is then used to define a probability measure function

P : P(B∞)→ [0, 1]

from sets of bit sequences to real numbers between 0 and 1. The natural question “for a
given a, with what probability does f̂ satisfy the specification?” then becomes “for a given
a, what is the probability measure of the set

{s | B(a, fst (f a s))}

of bit sequences?”7

Example: Consider the dice probabilistic program which is supposed to output a se-
quence of fair dice throws. As a probabilistic ‘function’, it has type

d̂ice : I→ N

where I is the ‘unit’ type containing only the element (). A sequence of dice throws is

obtained by repeatedly evaluating d̂ice (). Using the method above, we can formalize this
probabilistic program with a higher-order logic function of type

I→ B∞ → N× B∞

3Commonly, IID is introduced as a property of a finite collection of random variables. We extend this
to an infinite sequence by insisting that every finite prefix is IID.

4Predicates in higher-order logic are simply functions to the booleans B.
5Note that the formula ∀ a. B(a, f̂(a)) does eliminate any non-determinism, since for each a the

application f̂(a) is probabilistic.
6Functions in higher-order logic must be deterministic, so modelling f̂ in this way has eliminated

probabilistic non-determinism.
7The function fst picks the first component of a pair, in this case the β from β × B∞.

18 CHAPTER 1. INTRODUCTION

However, the I is redundant in this context, and so the type we actually use is

dice : B∞ → N× B∞

Each of the input bit sequences is an oracle that determines the value of dice. The
probability that dice outputs a ‘3’ is the probability measure of the following set of bit
sequences:

{s | fst (dice s) = 3}
Assuming dice is implemented correctly, the probability measure of this set will be equal
to 1

6
. Informally, dice partitions the whole space of bit sequences into 6 equally-sized

pieces according to the probability measure. The result of the application dice s is then
determined by the piece that contains the input bit sequence s. 2

Modelling probabilistic programs with higher-order logic functions in this way has a
number of advantages:

• probabilistic programs can be represented as higher-order logic functions; we do not
have to formalize another programming language in which to express the programs;

• since our modelling of probabilistic functions is the same as that used in pure func-
tional programming languages, we can both borrow their monadic notation (Wadler,
1992) to elegantly express our programs, and easily transfer programs to and from
an execution environment;

• when applying the theory to the verification of probabilistic programs, we need
provide formal support for only one probability space: sequences of IID Bernoulli(1

2
)

bits.

A central concept in our model is probabilistic independence, where two events A and
B are independent if

P(A ∩B) = P(A)P(B)

Independence can be naturally lifted to probabilistic functions, and this allows us to cal-
culate the probability of complicated results. Unfortunately it is difficult to show that
a given probabilistic function is independent, because the natural property of function
independence is not compositional. However, we create a compositional property of inde-
pendence by strengthening the natural property, and in this way we can show that every
probabilistic function constructible using our monadic constructors is automatically inde-
pendent.

The formalization of probability theory and the compositional independence prop-
erty provide the technology to address a tricky problem: how to represent and reason
about probabilistic programs that do not necessarily terminate, but terminate with prob-
ability 1. A probabilistic version of the ‘while’ loop is introduced in the form of a new
monadic operator that preserves the compositional independence property: at this point
the monadic operators are expressive enough to construct any probabilistic program that
terminates with probability 1.8 A formalization of important probabilistic termination
results from the literature completes the framework we need to specify and verify real
probabilistic programs.

8The set {coin flip, unit, bind, prob while} of monadic operators has this property.

1.5. EXAMPLE PROBABILISTIC PROGRAMS 19

1.5 Example Probabilistic Programs

In Chapter 4 we demonstrate the application of our formal framework by verifying a
selection of example probabilistic programs. First to be verified are sampling algorithms
for four probability distributions, and we then move on to the symmetric simple random
walk and the ‘optimal dice’ programs of Knuth and Yao (1976).

For our purposes, a sampling algorithm is a converter program that takes as input a
sequence of Bernoulli(1

2
) samples and outputs a sequence of samples from another prob-

ability distribution. It is a curious fact that sampling algorithms exist for all probability
distributions in the literature,9 and so it is sufficient for us to treat as primitive only the
probability space of Bernoulli(1

2
) sequences: all the rest can be obtained by creating an

appropriate sampling algorithm.
Sampling algorithms for the well-known probability distributions tend to be small

programs that each involve some interesting reasoning about probability to prove their
correctness. They are thus ideal vehicles for developing the notation and proof techniques
needed for practical verification of probabilistic programs. In addition, once a suite of
sampling algorithms has been verified for some common distributions, they can be used
as subroutines in the definition of higher-level textbook probabilistic algorithms.

Using our higher-order logic model, we formally verify sampling algorithms for the
Binomial(1

2
, n), Uniform(n), Geometric(1

2
) and Bernoulli(p) probability distributions. The

Geometric(1
2
) distribution poses special problems for formal treatments of probabilistic

algorithms, since the distribution is over an infinite set. The Bernoulli(p) is also tricky,
since the parameter p can be any real number in the range [0, 1]. However, we implement
sampling algorithms for each distribution and prove them correct.

In addition to sampling algorithms we also use our framework to formalize the DDG
tree10 notation for probabilistic programs, introduced by Knuth and Yao (1976). It is
demonstrated that finite DDG trees can be naturally represented using our formal frame-
work, and two examples of DDG trees from Knuth’s paper are verified. These two DDG
trees are probabilistic programs that ‘optimally’ generate dice throws and sums of two
dice throws—optimal in the sense that the expected number of Bernoulli(1

2
) samples that

they require is minimal among all dice generating programs.
The last verification example in this chapter is the symmetric simple random walk: a

probabilistic process with a compelling intuitive interpretation. A drunk starts at point n
(the pub) and is trying to get to point 0 (home). Unfortunately, every step he makes from
point i is equally likely to take him to point i + 1 as it is to take him to point i− 1. As
every probabilist knows, the drunk will eventually get home with probability 1, and so the
probabilistic program that simulates the drunk has the probabilistic termination property.
The probabilistic program that simulates the random walk does not fit neatly into a
standard program scheme that guarantees probabilistic termination. It is an advantage of
our formal framework that definition of probabilistic programs is not tied to any particular
program scheme, and so we can define the random walk, prove that it terminates, and
show that it satisfies some characteristic properties.

9Williams (1991, page 35) puts it like this: “every experiment you will meet in this (or any other)
course can be modelled via the triple ([0, 1],B[0, 1], Leb).”

10DDG stands for Discrete Distribution Generating.

20 CHAPTER 1. INTRODUCTION

1.6 The Miller-Rabin Primality Test

In Chapter 5 we verify a classic random algorithm: the Miller-Rabin primality test. Based
on a number theoretic result of Miller (1975), Rabin (1976) introduced a primality test
that produces correct results with provably high probability. It is particularly relevant to
modern cryptography, where large primes are frequently required for public key encryption
algorithms (e.g. RSA).

Using our HOL probability theory, the primality test itself is simple to define and has
a concise probabilistic specification. However, the correctness proof is fairly advanced and
relies on some computational number theory that has not previously been formalized in
any theorem prover. With the help of automatic proof tools—including our own predicate
set prover described in Appendix B—we are able to formalize the required mathematics
and verify that our Miller-Rabin implementation satisfies its probabilistic specification.

The benefits of formalization are made particularly apparent here, since the specifi-
cation that we prove the implementation satisfies is stronger than the specification given
in most algorithm textbooks. In fact, this extra strength allows the creation of an auto-
matic proof procedure that uses the Miller-Rabin primality test to prove that numbers
are composite without requiring knowledge of their factors. Using this, we can prove HOL
theorems such as

` ¬prime(228

+ 1)

showing that the 8th Fermat number is composite.
To highlight the software engineering benefit of this formal methods research, the ver-

ified HOL version of the Miller-Rabin test is manually extracted to the ML programming
language. With some careful work designed to preserve as much as possible the context in
which it was verified, it is possible to execute the program in ML. We extensively analyse
the performance of this ‘partially-verified version’ of the Miller-Rabin primality test, and
demonstrate its efficacy on numbers up to 2000 bits long.11

1.7 Automatic Proof Tools

The formalization of a mathematical proof into logic requires it to be reduced to axioms
using only primitive rules of inference. The difficulty of this task stems not from deciding
how each goal should be reduced to simpler subgoals (usually this is obvious from the
mathematical proof), but rather from managing the sheer volume of logical detail that
arises when reducing mathematical proofs to logic. Computer theorem provers provide a
large benefit in keeping track of the logical dependencies that would otherwise have to be
manually recorded, and thereby giving us confidence that our proof is valid.

However, the number of subgoals that can arise in the formalization of even a simple
mathematical theorem can be overwhelming.12 To really aid the effort, the computer
must do more than correctly account for each subgoal: it must automatically prove some
without requiring any interaction with the user.

11At time of writing, an RSA modulus of 512 bits has been factored, 1024 bits is generally used, and
2048 bits is considered prudent. Two primes each 2000 bits long give a 4000 bit RSA modulus, so our
Miller-Rabin implementation serves well the current security requirements.

12A tactic proof in one of our theories that 2 is a prime took 10712 primitive rules of inference, though
this is mainly due to the use of profligate automatic proof tools.

1.7. AUTOMATIC PROOF TOOLS 21

Though not the focus of this thesis, developing new proof procedures to speed up
formalization is an integral part of our research. Improving the tools makes it possible
to formalize more challenging mathematical theories, and then actually performing the
formalization highlights the limitations of the existing proof procedures and stimulates the
next cycle of tool-building. Both activities contribute to the theorem proving community,
since theories can be built upon and tools can be applied by all other users of the theorem
prover, whether they are interested in further formalization or using the theories to verify
a particular design.

Two possible misconceptions about automatic proof tools may be clarified here. Firstly,
adding a new proof tool can never result in false theorems. In fact, the LCF design of the
HOL theorem prover actively encourages users to write new proof tools in the ML pro-
gramming language, secure in the knowledge that the logical kernel will foil any attempt
to violate soundness. Secondly, by using automatic proof search we are not saying that
we are no longer interested in the proofs of theorems. There is an important distinction
between what is mathematically obvious and what is logically obvious,13 and all a bare
theorem prover can do is make logically obvious steps. It is therefore necessary to create
sophisticated proof tools to automatically reduce mathematically obvious steps to a string
of logically obvious steps.

There is usually a trade-off between the range of goals that can be proved and the
depth which can be searched before a combinatorial explosion occurs. With this in mind,
we briefly survey how the main proof procedures used in modern theorem provers can
help with formalization:

First-order deductive provers: These use algorithms such as resolution or model
elimination to perform general first-order proof search. In practice they are ex-
tremely useful for finishing off easy goals, but are quickly swamped when confronted
with deeper problems.

Conditional rewriters: These take theorems of the form

∀~v. C(~v)⇒ (A(~v) = B(~v))

and rewrite instances of A in the goal to the corresponding B. For each instance,
the condition C must be proved before the rewrite can take place (usually by a
decision procedure or by a recursive call to the conditional rewriter). These tools
are used to simplify goals, and their main failing is that the condition prover is too
weak in some situations (leading to helpful conditional rewrites never being used),
and too aggressive in others (leading to unacceptable performance).

Decision Procedures: There are many classes of formula for which there exists an au-
tomatic procedure that will always succeed in either proving or refuting the goal. In
our formalization work we have extensively used decision procedures for Presburger
arithmetic: this is the class of number14 formulas that include addition, subtrac-
tion and comparison operators (i.e., no multiplications). As well as directly solving

13As pointed out by John McCarthy.
14In HOL there are decision procedures for Presburger arithmetic over natural numbers, integers and

reals.

22 CHAPTER 1. INTRODUCTION

many subgoals, they can also be used in the middle of a complicated proof to prove
a lemma such as

` ∀ a, b, c, d. (a = b) ∧ (c = d)⇒ (a+ c = b+ d)

that can be immediately used to reduce the current goal. The main limitation of
decision procedures is that most goals do not naturally fall into a decidable class,
and must first be reduced using other tools.

Appendix B describes an automatic proof tool we developed to support the verification
of the Miller-Rabin primality test. It works by simulating predicate subtyping—a feature
present in the logic of the PVS theorem prover (Owre et al., 1999)—by using HOL sets.
The proof tool is able to tackle a class of ‘compositional properties’ that frequently occur
as conditions of conditional rewrites, and was found to be particularly useful on problems
of group theory.

1.8 How to Read this Thesis

In the interest of easy browsing, some effort has been made to keep different chapters
as independent as possible, but inevitably some concepts are built upon as the work
progresses. Figure 1.1 suggests some reading paths through the thesis.

1
↓ ↘
2 → 3
↓ ↙ ↓ ↘
6 ← 5 ← 4

Chapter Topic
1 Introduction
2 Formalized Probability Theory
3 Verifying Probabilistic Algorithms
4 Example Probabilistic Programs
5 The Miller-Rabin Primality Test
6 Summary

Figure 1.1: Suggested Reading Paths Through This Thesis.

A brief introduction to higher-order logic and the HOL theorem prover is given in
Appendix A. This primer explains the types, terms, theorems and rules of inference of
higher-order logic, and their implementation in the HOL theorem prover. For more details
the interested reader is referred to Gordon and Melham (1993). In the following list we
limit ourselves to explaining a few symbols that might not be familiar to everyone, and
set out the notation conventions we use throughout the thesis:

• Theorems: Formulas proved in a theorem prover are referred to as theorems, and
always displayed with a `system prefix, where the system is the theorem prover used.
A bare ` means the same as `HOL.

• Types: Examples of HOL types are: B = {>,⊥} (booleans); N = {0, 1, 2, . . .}
(natural numbers); R (real numbers); α, β (type variables); α→ β (function spaces);
α× β (pairs); α∗ (lists); and P(α) (sets).

1.8. HOW TO READ THIS THESIS 23

• Constants: HOL constants are displayed in standard mathematical notation when
possible (e.g., +, ∗, mod , ∀ and ∈), or sans serif when not (e.g., prime, image, group
and cyclic). Note that higher-order logic is expressive enough to define as constants
both functions (such as fst and snd which allow us to pick the first and second
component of a pair) and also mathematical operators (such as ◦ and funpow which
denote function composition and function power respectively).

• λ-Calculus: The simply typed λ-calculus of Church (1940) is the term language
of higher-order logic. Therefore, many HOL definitions have much in common
with functional programs, and various programming-language constructs such as
if . . . then . . . else have been defined in higher-order logic. In addition, the HOL
function definition package (called TFL) aids the definition of total recursive func-
tions.

• Lists: There are many list operations defined as higher-order logic constants. The
list constructors are [] and cons, but note that cons 1 [] may also be written as
1 :: [] or [1]. List operations include the head and tail destructors hd and tl, length
function length, membership predicate mem, and the higher-order list function map.

• Sets: Sets containing elements of type α are modelled in higher-order logic by
functions α→ B, and the notation {x | P (x)} stands for λx. P (x). It is possible to
define polymorphic higher-order constants representing all the usual set operations
such as ∈, ∪, image and

⋃
. In addition, for each α there exists a universe set

Uα = {x : α | >} that contains every element of type α.15 We sometimes write a

bare U for Uα if the type α can be deduced from context. Finally, A
·→ B denotes

the set of functions between the sets A and B, and
⋃

x∈s f(x) is a useful shorthand
for
⋃

(image f s).

• Mathematics: When doing informal mathematics, we follow the convenient cus-
tom of confusing the group G with its carrier set; in HOL we explicitly write set G
for the carrier set (and ∗G for the operation). Also, we rely on context to disam-
biguate the following cases: |S| meaning the cardinality of the set S; |g| meaning
the order of the group element g; and a | b | c meaning that both a divides b and b
divides c.

15Since the HOL logic specifies that all types are disjoint, so must be these universe sets.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Formalized Probability Theory

To build our semantics of probabilistic programs upon a solid foundation, we formalize in
HOL a rigorous theory of probability based on mathematical measure theory. Soundness
is ensured by constructing the probability space of Bernoulli(1

2
) sequences in a purely def-

initional extension of higher-order logic. We emphasize the development of notations to
simplify our later use of this theory, and as part of this introduce probabilistic versions of
the quantifiers into higher-order logic.

2.1 Introduction

The work described in this chapter is a combination of two technical fields: mathematical
measure theory and interactive theorem proving. The author appreciates that few readers
will be fluent in both disciplines.

To aid the reader who is familiar with interactive theorem proving but is perhaps rusty
on the mathematics, we have tried to make the chapter self-contained by defining all the
concepts we use. Nevertheless, this is a poor substitute for a mathematical textbook that
carefully explains the difficult ideas: two relevant ones are Probability with Martingales
(Williams, 1991) and Probability and Measure (Billingsley, 1986). Also, if the main inter-
est of the reader is the verification of probabilistic algorithms, then it may make sense to
skip directly to Chapter 3 and refer back to this chapter as required.

For the reader who is conversant with measure theory but not with theorem proving,
we have attempted to render our theorems in something close to mathematical notation,
and provide in Appendix A a quick guide to the fundamental HOL concepts. The purpose
of this chapter is to create a version of measure theory that can be input to a machine,
and in Appendix C we give an abridged version of this end-product. Finally, for general
background on formalization we recommend a paper of Harrison (1996a), and for a de-
tailed introduction to the HOL theorem prover refer to Gordon and Melham (1993) or
the current hol98 tutorial (Slind and Norrish, 2001).

2.1.1 The Need for Measure Theory

Recall from Section 1.4 that given a probabilistic ‘function’ f̂ : α→ β and a specification
B : α× β → B, we model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

25

26 CHAPTER 2. FORMALIZED PROBABILITY THEORY

that explicitly passes around an infinite sequence of random bits. The probability that
f̂(a) satisfies the specification B is then the ‘probability measure’ of the set of sequences

{s | B(a, fst (f a s))}

Thus the first goal of this chapter is make this precise, by formally defining a proba-
bility measure

P : P(B∞)→ [0, 1]

from sets of infinite bit sequences to real numbers between 0 and 1, matching our intuition
that all sequences are ‘equally likely to occur’. To begin with, we list some desirable
properties that we might expect any measure function to satisfy.

Definition 1 Properties that a Measure Function µ : P(X)→ R may satisfy.

Positivity:
∀E. 0 ≤ µ(E), with µ(∅) = 0 (2.1)

Monotonicity:
∀E,E ′. E ⊂ E ′ ⇒ µ(E) ≤ µ(E ′) (2.2)

Additivity:
∀E,E ′. E ∩ E ′ = ∅ ⇒ µ(E ∪ E ′) = µ(E) + µ(E ′) (2.3)

Countable Additivity:

∀ (En). (∀ i 6= j. Ei ∩ Ej = ∅) ⇒ µ
(⋃

n

En

)
=
∑

n

µ(En) (2.4)

In addition, µ is a probability measure if the measure µ(X) of the whole space is equal
to 1.

Unfortunately, a celebrated result of Banach and Tarski (see Wagon, 1993) showed that
if the Axiom of Choice is assumed,1 then there can exist sets that are non-measurable.
A non-measurable set has the property that whichever real number is defined to be its
measure, a contradiction may be derived. To illustrate this result with a classic example,
it is possible to dissect the surface of a 2-dimensional sphere into five disjoint pieces, so
that by using only rigid transformations they can be re-assembled into two spheres of
exactly the same size as the original! Clearly these five pieces can have no well-defined
‘area’.

The Banach-Tarski paradox also applies to bounded sets of real numbers. Suppose
there existed a measure function

µ : P [0, 1]→ R

that satisfies all of the above properties, and maps open intervals2 (a, b) to their length
b−a. Then it is possible to construct a set N ⊂ [0, 1], such that whatever value µ(N) may

1As it is in the higher-order logic we use, in common with most of mathematics.
2The open interval (a, b) is defined to be the set {x | a < x < b}, and the closed interval [a, b] is the

set {x ∈ R | a ≤ x ≤ b}.

2.1. INTRODUCTION 27

take, a contradiction can be derived. In terms of our definitional extension of higher-order
logic, the Banach-Tarski paradox effectively prevents any definition of µ from satisfying
all of the required properties.3 And since infinite sequences of bits have similar proper-
ties to the real numbers between 0 and 1,4 it seems reasonable that the Banach-Tarski
paradox might also be encountered when trying to define a probability function on sets
of sequences. Indeed, this caution is justified in Section 2.4.3, where we define in HOL
a non-measurable set Ω of sequences, proving in the theorem prover that Ω can have no
possible measure.

2.1.2 How to Create a Measure

To develop a solid foundation upon which to stand a theory of probability, Kolmogorov
(1950) and others developed mathematical measure theory: this avoids the contradic-
tions of non-measurable sets by explicitly restricting the domain of measure functions.
Before presenting in detail our construction of a probability measure for sets of infinite
bit sequences, we will first illustrate the steps of the procedure by showing how Lebesgue
integration is defined on sets of real numbers between 0 and 1.

The first step is to choose the generating sets G of the measure, for which we select
all the open intervals in [0, 1]:

G = {(a, b) | 0 ≤ a < b ≤ 1} ⊂ P [0, 1]

We also assign a real-valued measure to each of the generating sets; in our case it is
natural to assign the length b− a to the open interval (a, b). It is usually a simple matter
to check that at this point our measure, when restricted to the generating sets, satisfies
the properties of Definition 1.

We next perform two closure steps, designed to increase the number of sets that it is
possible to measure. The first step jumps to the smallest algebra containing the generating
sets.

Definition 2 An algebra F ⊂ P(U) of sets:

1. contains the empty set, i.e., ∅ ∈ F ;

2. is closed under complements, i.e., ∀A ∈ F . Ac ∈ F ;

3. is closed under finite unions, i.e., ∀A,B ∈ F . A ∪B ∈ F .

The measure µ must also be extended so that it is defined on every set in the algebra.
It is usually straightforward to define an extended measure and verify that it satisfies the
properties of Definition 1 (when restricted to sets in the algebra). Often the sets of the
algebra have a finite representation, making it possible to reason about them directly. In
our example, the smallest algebra X containing the generating sets G is the set of disjoint

3The extra work involved in a definitional extension shows its worth at times like this: it would be
all too easy to introduce a subtle inconsistency by adding a new constant µ and asserting as axioms the
desired properties.

4A great deal of intuition can be gained by identifying the bit sequence (x0, x1, x2, . . .) with the real
number 0.x0x1x2 · · · (written in binary), ignoring the fact that the distinct sequences (0, 1, 1, 1, . . .) and
(1, 0, 0, 0, . . .) encode the same real number.

28 CHAPTER 2. FORMALIZED PROBABILITY THEORY

finite unions of intervals, where each interval may either be open (a, b), closed [a, b] or
half-open (a, b], [a, b).

The final step in the construction of the measure is the jump to the smallest enclosing
σ-algebra.

Definition 3 A σ-algebra F ⊂ P(U) of sets:

1. is an algebra;

2. is closed under countable unions, i.e.,

∀A0, A1, A2, . . . ∈ F .
(⋃

n∈N

Ai

)
∈ F

We write σ(G) for the smallest σ-algebra containing G.

This last step is the important one: in our running example the smallest σ-algebra
containing G defines the Borel sets B[0, 1], and the extension of our measure µ defines
Lebesgue integration. Unfortunately, performing this step is complicated, and generally
requires Carathéodory’s extension theorem to show that a measure exists with the desired
properties. In addition, it is usually the case that sets of the σ-algebra are not finitely
representable, and new proof techniques are needed to effectively reason about them. But
despite the complications it raises, the step is necessary to ensure that the theory we
formalize is comprehensive: “every subset of R which you meet in everyday use is an
element of B” (Williams, 1991, page 17). Indeed, as we shall see in Section 2.4.1, the set
of sequences that we need to effectively tackle probabilistic termination appear only at
the σ-algebra step.

In Sections 2.2, 2.3 and 2.4 we formalize some general measure theory, construct
the algebra of sequence sets, and apply Carathéodory’s extension theorem to define the
probability space of Bernoulli(1

2
) sequences. The end result of this is a σ-algebra E of

measurable sets, and a measure P defined on E which is positive, increasing, additive and
countably additive. In the language of probability theory, E is a set of events and P is a
probability measure.

2.2 Measure Theory

In this section we take a general theory of measure based on sets (Williams, 1991), and
formalize in HOL the definitions and theorems that are needed to define a probability
measure on sets of bit sequences. Some of this formalization work is not new: there
have been two versions of measure theory developed in the Mizar5 theorem prover. The
first version was created by Nȩdzusiak (1989) to support a rigorous theory of probability,
and the second was a more comprehensive effort by Bia las (1990) to define Lebesgue
integration. Therefore, in this section we will concentrate on the aspects that are either
novel to our higher-order logic development, or particularly support our later verification
of probabilistic algorithms.

5http://www.mizar.org/

2.2. MEASURE THEORY 29

2.2.1 Measure Spaces

The HOL definitions of algebras and σ-algebras correspond closely to the mathematical
versions given in Definitions 2 and 3.

Definition 4 Algebras and σ-algebras in HOL

` ∀F . (2.5)

algebra F =

∅ ∈ F ∧ (∀A. A ∈ F ⇒ Ac ∈ F) ∧
∀A,B. A ∈ F ∧ B ∈ F ⇒ A ∪B ∈ F

` ∀F . (2.6)

sigma algebra F =

algebra F ∧ ∀C. countable C ∧ C ⊂ F ⇒
(⋃
C
)
∈ F

` ∀F . sigma G =
⋂
{F | sigma algebra F ∧ G ⊂ F} (2.7)

Using the HOL theory of sets we can now prove some basic results, such as the following
propositions:

` ∀F , A,B. algebra F ∧ A ∈ F ∧ B ∈ F ⇒ A ∩B ∈ F (2.8)

` ∀F , C. algebra F ∧ finite C ∧ C ⊂ F ⇒
(⋃
C
)
∈ F (2.9)

` ∀G. sigma algebra (sigma G) (2.10)

This last proposition shows that σ(G) is well-defined: by construction there is always a
unique smallest σ-algebra containing G.

Conventionally, measure theory defines measures to be functions from the set P(X)
of subsets of a set X to the extended real numbers R = R∪ {−∞,+∞}. This is also the
formalism used by Bia las (1990) in Mizar. The extended real numbers are used to create
a more uniform theory, so that it is meaningful to write∫

x∈R
1 dx = +∞

instead of having to say that the left hand side does not have a well-defined value, but
diverges to +∞.

Notwithstanding, in our HOL formalization we model measures with functions from
P(α) to the standard real numbers R (constructed in HOL by Harrison (1998)).6 We
briefly experimented with creating a new type R of extended real numbers, together with
lifted versions of the usual field operations. However, we felt that the complications that
this generated (transfer functions between the types, dealing with (+∞) + (−∞), etc.)
more than cancelled out the gain in uniformity described above, and that a simpler theory
resulted from sticking to the standard real numbers. Thus our theory only directly applies

6It may appear to be a restriction that the domain of our measures is P(α) (where α is an entire
higher-order logic type) instead of the conventional P(X) (where X is any set). However, we can model
a measure µ on X with the measure µ̄(A) = µ(A ∩X).

30 CHAPTER 2. FORMALIZED PROBABILITY THEORY

when the measure that we are modelling is finite (i.e., µ(U) <∞). If in the future infinite
measures are required, the cleanest solution may be to bypass the extended reals entirely
and jump to the hyper-reals, which have been formalized in higher-order logic by Fleuriot
(2001). In any case, probability measures satisfy µ(U) = 1, so there are no problems using
the standard reals. Indeed, this is the approach taken in the development of probability
theory in Mizar by Nȩdzusiak (1989).

The fundamental object of our interest is the measure space M = (F , µ), which is a
set F of measurable sets paired with a measure function µ. Measure spaces have HOL
type

P(P(α))× (P(α)→ R)

and we use the following functions to recover their components:

` ∀F , µ. measurable sets (F , µ) = F (2.11)

` ∀F , µ. measure (F , µ) = µ (2.12)

Having decided upon our representation, it is a simple matter to define the HOL versions
of the measure properties that we introduced in Definition 1.

Definition 5 Properties of Measure Spaces

` ∀M. (2.13)

positiveM =

measureM ∅ = 0 ∧
∀A. A ∈ measurable setsM ⇒ 0 ≤ measureM A

` ∀M. (2.14)

increasingM =

∀A,B.
A ∈ measurable setsM ∧ B ∈ measurable setsM ∧ A ⊂ B ⇒
measureM A ≤ measureM B

` ∀M. (2.15)

additiveM =

∀A,B.
A ∈ measurable setsM ∧ B ∈ measurable setsM ∧
A ∩B = ∅ ⇒
measureM (A ∪B) = measureM A+ measureM B

` ∀M. (2.16)

countably additiveM =

∀ f.
f ∈ (UN

·→ measurable setsM) ∧
(∀m,n. m 6= n⇒ f(m) ∩ f(n) = ∅) ∧(⋃

n∈UN

f(n)
)
∈ measurable setsM ⇒

∑
n∈UN

measureM (f(n)) = measureM
(⋃

n∈UN

f(n)
)

2.2. MEASURE THEORY 31

Following Williams (1991), in the definition of countable additivity we assume that
the countable union set is measurable.7

Some combinations of these properties imply others, and the most useful theorems of
this kind are as follows:

` ∀M. (2.17)

algebra (measurable setsM) ∧ positiveM ∧ additiveM ⇒
increasingM

` ∀M. (2.18)

algebra (measurable setsM) ∧ positiveM ∧
countably additiveM ⇒
additiveM

` ∀M, f. (2.19)

algebra (measurable setsM) ∧ positiveM ∧ increasingM ∧
additiveM ∧ f ∈ (UN

·→ measurable setsM) ∧
(∀m,n. m 6= n⇒ f(m) ∩ f(n) = ∅) ⇒
summable (measureM◦ f)

So assuming an algebra of measurable sets and a positive measure, we have that additivity
implies increasing, countable additivity implies additivity, and increasing and additive
imply that the sequence of disjoint set measures can be summed. This last result is
halfway toward showing that countable additivity holds, the only fact remaining to be
shown is that the sum (which must now exist) is equal to the measure of the union of
these disjoint sets.

We may now formalize the concept of a measure space.8

Definition 6 Measure Spaces

` ∀M. (2.20)

measure spaceM =

sigma algebra (measurable setsM) ∧ positiveM ∧
countably additiveM

To speed up the development, some properties of measure spaces are also formalized,
including a HOL version of the important Monotone Convergence Theorem.

7It is not necessary to assume the union set is measurable in the definition of additivity, since the
measurable sets always form an algebra whenever these properties are applied in our development.

8Using this property it would now be possible to define a new HOL type of α measure spaces (an
inhabitant has measurable sets ∅ and U having measure 0 and 1 respectively—this is also a probability
space). This would have the positive effect of removing some side-conditions from theorems about measure
spaces, but would require extra reasoning with the bijection functions for the new type. It was not clear
that a net gain in simplicity would result, and so we chose not to follow this route in the present
formalization.

32 CHAPTER 2. FORMALIZED PROBABILITY THEORY

Theorem 7 (Monotone Convergence Theorem)

` ∀M, A, f. (2.21)

measure spaceM ∧ f ∈ (UN
·→ measurable setsM) ∧

(∀n. f(n) ⊂ f(suc n)) ∧ (A =
⋃

n∈UN

f(n)) ⇒

lim
n→∞

(measureM (f(n))) = measureM A

The conditions on f in this theorem are stated as “(f(n))n monotonically converges
to A”, and often written as (f(n))n ↑ A.

2.2.2 Carathéodory’s Extension Theorem

Definition 6 tells us precisely what a measure space is, but offers little in the way of
hints on how to construct one. Since an algebra F is generally finitely representable, it
is perhaps reasonable to believe that it will be possible to directly define a particular
measure µ0 on sets in F , and prove that µ0 has the required properties of positivity and
countable additivity. However, if we cannot even write down the general form of a set in
σ(F), then it is not at all clear how we can extend µ0 to a measure µ that is positive and
countably additive on σ(F). This is precisely what the celebrated extension theorem of
Carathéodory allows us to do.

Theorem 8 (Carathéodory’s Extension Theorem)

` ∀M0. (2.22)

algebra (measurable setsM0) ∧ positiveM0 ∧
countably additiveM0 ⇒
∃M.

(∀A.
A ∈ measurable setsM0 ⇒ measureM A = measureM0 A) ∧

measurable setsM = sigma (measurable setsM0) ∧
measure spaceM

Given an algebra A and a positive, countably additive measure µ0 on A, there exists a
measure space (σ(A), µ) such that µ = µ0 on A.

The proof of this theorem requires two new definitions. Firstly, given a set system
F and a measure function λ we may define the λ-system of F , which contains every set
L ∈ F satisfying

∀A ∈ F . λ(L ∩ A) + λ(Lc ∩ A) = λ(A)

Secondly, we define an outer measure, which is positive, increasing and countably subad-
ditive, where this last is the following property:

∀ (En). µ
(⋃

n

En

)
≤
∑

n

µ(En)

2.2. MEASURE THEORY 33

We next prove Carathéodory’s lemma, which states that given an outer measure λ on
the σ-algebra F , the sets of the λ-system of F form a σ-algebra on which λ is countably
additive. This was formalized in the Mizar development of Bia las (1992).9

Carathéodory’s extension theorem follows from the lemma by taking the outer measure
to be

λ(A) = inf
{∑

n

µ0(An)
∣∣∣ (An) ⊂ A ∧ A ⊂

⋃
n

An

}
on the σ-algebra F of all subsets, and then showing both that A is a subset of the
generated λ-system and that λ = µ0 on A.

The HOL formalization of Carathédory’s extension theorem took around two weeks,
and the proof script file for the whole of measure theory is about 2000 lines long. Much
of the effort was spent on various theorems of sets and real analysis that were needed to
support the measure theory proofs.

2.2.3 Functions between Measure Spaces

The measurability of a function is an important theoretical concept, and also a useful
practical tool for proving that sets are measurable.

Definition 9 Measurability

` ∀F ,G. (2.23)

measurable F G = {f | ∀G. G ∈ G ⇒ preimage f G ∈ F}

Informally, if f ∈ measurable F G, where F has type P(α) and G has type P(β), then

f : α → β

preimage f ∈ G ·→ F

However, when F and G are σ-algebras, then it may not be easy to prove that a
particular function f is in measurable F G. Again, the problem is that usually there is no
general representation of σ-algebra sets, so a direct proof is out of the question. Instead,
if G = σ(C) for some set C ⊂ G, then we can use a very neat argument. Define the set

X = {G ∈ G | preimage f G ∈ F}

Clearly X ⊂ G. If we can show that X is a σ-algebra that contains C, then by the
definition of σ(C) we must have that σ(C) ⊂ X , and so σ(C) = X . Showing that X is a
σ-algebra turns out to be a consequence of the definition of preimage and is independent
of f , so we can prove the general theorem:

` ∀ f,F , C. (2.24)

sigma algebra F ∧ f ∈ measurable F C ⇒
f ∈ measurable F (sigma C)

9In the Mizar formalization of Bia las (1992), his Caratheodor’s[sic] measures are our outer measures,
and what he calls Caratheodor’s theorem is what we call Carathéodory’s lemma.

34 CHAPTER 2. FORMALIZED PROBABILITY THEORY

In other words, instead of showing that the preimage of every set in the σ-algebra is
measurable, we need only show this for a collection of sets that generate the σ-algebra.

We next define a useful extension of measurability, the property of a function being
measure-preserving.

Definition 10 Measure Preservation

` ∀M1,M2. (2.25)

measure preservingM1 M2 =

{f |
f ∈ measurable (measurable setsM1) (measurable setsM2) ∧
∀A.
A ∈ measurable setsM2 ⇒
(measureM1 (preimage f A) = measureM2 A)}

A function f is measure preservingM1 M2 if for each measurable set M2 of M2, the
preimage M1 under f of M2 satisfies:

• M1 is a measurable set of M1 (so f is measurable between the measurable sets of
M1 and M2);

• and the measure of M1 in M1 is the same as the measure of M2 in M2.

Analogously to the measurability property, we would like to show that

f ∈ measure preservingM (σ(C), µ)

reduces to
f ∈ measure preservingM (C, µ)

by proving that
{A ∈ σ(C) | measureM (preimage f A) = µ(A)}

is a σ-algebra containing C.
Unfortunately, whereas in the case of measurability this last step was an easy conse-

quence of the definition of preimage, for measure preservation it is not quite so straightfor-
ward. The problem is showing closure under finite unions. Just because f preserves the
measure of A and B does not necessarily imply that f preserves the measure of A∪B. If
A and B are disjoint or one is a subset of the other then the result follows, but otherwise
it may not.

Thankfully, a standard result of measure theory comes to the rescue. A neat theorem
gives an alternative characterization of σ(A) when A is an algebra.

Theorem 11 If A is an algebra, then σ(A) is the intersection of all sets F satisfying the
following conditions:

1. A ⊂ F

2. F is closed under complements.

2.2. MEASURE THEORY 35

3. F is closed under countable disjoint unions.

4. F is closed under countable increasing unions (where (En) is increasing if En ⊂ En+1

for every n).

Proof: Let G be the intersection of all F satisfying the above properties. First note that
G ⊂ σ(A), since σ(A) satisfies the properties. To show that σ(A) ⊂ G, we must show
that G is a σ-algebra containing A. Since one characterization of a σ-algebra is an algebra
closed under countable disjoint unions, the only difficulty is to show closure under unions.

Let X be the subset of G that is closed under unions with sets of the algebra A. But
the algebra A is closed under unions, and so X satisfies the properties in the theorem,
and so G ⊂ X . Therefore G = X , and so G is closed under unions with sets in the algebra
A.

Now let Y be the subset of G that is closed under unions with all of the sets in G.
As we have just proved, all of the sets in the algebra A are sets in Y , and so Y satisfies
the properties of the theorem, thus G ⊂ Y . Therefore G = Y , and so G is closed under
unions, as required. 2

It is easy to prove that the property of measure-preservation satisfies all of the condi-
tions of Theorem 11, and so we can deduce the following theorem:

` ∀M1,M2,A, f. (2.26)

measure spaceM1 ∧ measure spaceM2 ∧ algebra A ∧
(measurable setsM2 = sigma A) ∧
f ∈ measure preservingM1 (A,measureM2) ⇒
f ∈ measure preservingM1 M2

Therefore, instead of showing that f preserves the measure of every set in the σ-algebra,
we need only show this for an algebra that generates the σ-algebra.

2.2.4 Probability Spaces

A probability space is a measure space where the measure of the whole space is 1. In
a probability space, the measurable sets are called events, and the measure is called a
probability.

Definition 12 Probability Spaces

` ∀M. (2.27)

prob spaceM = measure spaceM ∧ measureM U = 1

` events = measurable sets (2.28)

` prob = measure (2.29)

` prob preserving = measure preserving (2.30)

These definitions of events, prob and prob preserving indicate our technique for dealing
with the change in terminology between measure theory and probability theory. Rather
than conventionally re-using the existing constants, which would lead to a rather confusing

36 CHAPTER 2. FORMALIZED PROBABILITY THEORY

theory of probability where we referred to measure instead of prob, we create a completely
new theory for our probability results. We then import the important results from measure
theory into this theory, in the process changing the statements of the theorems to use the
new constants.

This approach works surprisingly well. If a result is true for all measure spaces, then
we prove it in measure theory and then lift it to probability theory. If, on the other hand,
it is special to probability spaces, then we can prove it in the probability theory and leave
the measure theory alone. At all times the terminology is consistent and appropriate
to the application. In addition, our probability theory in not cluttered with the many
lemmas that were needed to prove the measure theory results of the previous subsections.

The first (and most important) concept special to probability spaces is that of inde-
pendence.

Definition 13 Independence

` ∀M, A,B. (2.31)

indepM A B =

A ∈ eventsM ∧ B ∈ eventsM ∧
probM (A ∩B) = (probM A)(probM B)

` ∀M,F ,G. (2.32)

indep familiesMF G =

∀F,G. F ∈ F ∧ G ∈ G ⇒ indepM F G

The indep families property of two families of sets F and G merely says that every
set F ∈ F is independent of every set G ∈ G. In our later verifications of probabilistic
programs, independence is the mechanism that will allow us to decompose terms of the
form P(A ∩B).

The following properties of independence will be useful in our verifications:

` ∀M, A. prob spaceM ∧ A ∈ eventsM ⇒ indepM ∅ A (2.33)

` ∀M, A. prob spaceM ∧ A ∈ eventsM ⇒ indepM U A (2.34)

` ∀M, A,B. (2.35)

prob spaceM ∧ indepM A B ⇒ indepM B A

` ∀M, A. (2.36)

prob spaceM ∧ A ∈ eventsM ⇒
(indepM A A ⇐⇒ probM A = 0 ∨ probM A = 1)

Nȩdzusiak (1990) has formalized more properties of independence in a neat Mizar version
of basic probability theory, but we could also prove these in our theory if they were needed.

2.3 Bernoulli(1
2) Sequences: Algebra

As we described in Section 2.1.2, the first step in defining a probability space is to define
some basic sets, and then close these sets under complements and finite unions to form an
algebra. The second step is to then define a measure on sets in the algebra, satisfying the

2.3. BERNOULLI(1
2
) SEQUENCES: ALGEBRA 37

conditions of positivity and countable additivity. At this point, we are in a position to
apply Carathéodory’s extension theorem to this measure and yield the final probability
space. In this section we develop the necessary theory to define an algebra of sets of
sequences, and a measure function on these sets that respects our intuition that “every
sequence is equally likely to occur”.

However, the relationship of this theory to the eventual theory of probability is not
merely a bootstrapping one, as for example the theory of positive reals is to the theory
of reals. Rather, we intend to use the theorems of Section 2.2.3 to solve problems of
measurability and measure-preservation of probabilistic programs. This will involve re-
ducing problems on the σ-algebra to equivalent problems on the algebra,10 and so we must
ensure that our algebra theory is equipped with the useful lemmas needed for practical
verification.

Although the previous section was a direct formalization of measure theory from the
textbook of Williams (1991), at this point our formalization diverges from his treatment.
In the theorem-prover we must be more concerned with the representation of sets of
infinite bit sequences, so that later we can use this theory to directly prove properties
of probabilistic programs. This work therefore represents a novel way to develop the
probability space of an infinite sequence of coin-flips: in textbooks this is normally made
fully rigorous by defining the space as an infinite product of a single coin-flip.11

2.3.1 Infinite Sequence Theory

As usual in higher-order logic modelling, the initial decisions are concerned with choosing
types to model our objects. In this case we represent infinite bit sequences with functions
N → B. The intuition is that if s models a bit sequence, then s(n) = > means that the
nth bit in the sequence is 1, and s(n) = ⊥ means that the nth bit is 0.

Generalizing slightly, we develop a theory of infinite α-sequences modelled by the type
N → α, where α is any higher-order logic type. Our guide here is the theory of lists,
and we define sequence analogues of the list functions hd, tl, cons, take and drop.12 We
also define sdest which gives the head and tail of the sequence as a pair; this will be a
surprisingly useful probabilistic program!

Definition 14 Basic Sequence Operations

` ∀ s. shd s = s 0 (2.37)

` ∀ s. stl s = s ◦ suc (2.38)

` ∀ a, s, n. scons a s 0 = a ∧ scons a s (suc n) = s n (2.39)

` ∀n, s. (2.40)

stake 0 s = [] ∧ stake (suc n) s = cons (shd s) (stake n (stl s))

` ∀n, s. sdrop 0 s = s ∧ sdrop (suc n) s = sdrop n (stl s) (2.41)

` ∀ s. sdest s = (shd s, stl s) (2.42)

10This is how the measurability theorems in Section 2.4.2 were proved.
11We could also have used infinite products to define the probability space, but this path would have

required formalizing many more theorems of measure theory.
12Of course, there is no analogue of [] or length, since these are infinite sequences.

38 CHAPTER 2. FORMALIZED PROBABILITY THEORY

Another useful generic construct is the following definition, which creates a sequence
from an observation and an iteration function.

Definition 15 Constructing a Sequence from an Iteration Function

` ∀h, t, x. siter h t x = scons (h(x)) (siter h t (t(x))) (2.43)

So for example, siter I suc 0 is the sequence (0, 1, 2, 3, . . .).

We also define a mirror sequence operation specific to boolean sequences: this maps
the sequence (x0, x1, x2, . . .) to (¬x0, x1, x2, . . .).

Definition 16 The mirror Sequence Operation

` ∀ s. mirror s = scons (¬(shd s)) (stl s) (2.44)

Finally, we prove some basic properties of sequences, to expedite proofs and to avoid
using their underlying representation as functions.

` ∀h, t. shd (scons h t) = h (2.45)

` ∀h, t. stl (scons h t) = t (2.46)

` ∀ s. ∃h, t. s = scons h t (2.47)

` ∀ s. scons (shd s) (stl s) = s (2.48)

` ∀h, h′, t, t′. scons h t = scons h′ t′ ⇐⇒ h = h′ ∧ t = t′ (2.49)

` ∀ s. mirror (mirror s) = s (2.50)

` ∀ s. stl (mirror s) = stl s (2.51)

In the succeeding theory, all of the infinite sequences we meet will be infinite boolean
sequences.

2.3.2 The Algebra Generated by Prefix Sets

We set the prefix sets to be the generating sets of an algebra A.

Definition 17 Prefix Sets

` ∀ l. prefix set l = {s | stake (length l) s = l} (2.52)

` ∀h, t. prefix seq (cons h t) = scons h (prefix seq t) (2.53)

So prefix set l is the set of all sequences that have initial segment l, and prefix seq l is the
canonical sequence of prefix set l.13

Since the prefix sets do not naturally form an algebra (for example, the empty set
cannot be represented as a prefix set), it is necessary to close the prefix sets under com-
plements and finite unions. For this we shall use an embedding function from boolean list
lists to sets of sequences.

13Note the use of a pattern match definition to fix only the cons case, allowing the [] case to assume
an arbitrary value.

2.3. BERNOULLI(1
2
) SEQUENCES: ALGEBRA 39

Definition 18 An Embedding Function

` ∀ l. embed [l0, . . . , ln−1] =
⋃

0≤i<n

prefix set li (2.54)

We may now define what it means to be a set in A.

Definition 19 The Bernoulli(1
2
) Algebra

` A = {A | ∃ l. embed l = A} (2.55)

At the moment we do not have all the machinery we will use to prove that A is
an algebra. Showing closure under complements is not trivial, and it will be the first
application of our induction principle on canonical forms, described in Section 2.3.3.

The second step in our probability space construction is to define a measure on the
sets in A. We begin with the intuition that all sequences are equally likely, so given two
lists l, l′ of the same length we would expect the measure of prefix set l to be the same as
the measure of prefix set l′. Pursuing the consequences of this, there are 2n boolean lists
of length n, and each sequence falls into exactly one of the prefix sets resulting from these
lists, so we therefore define the measure of prefix set l to be 2−(length l).

We can extend this to a measure µ on a general set in A.

Definition 20 A Measure on Sets in A

` ∀ l. µ0[l0, . . . , ln−1] =
∑

0≤i<n

2−(length li) (2.56)

` ∀A. µ(A) = inf{µ0(l) | embed l = A} (2.57)

We have to be rather careful in this definition, because for a given A ∈ A there may
be many l : B∗∗ with embed l = A. As an example, both [[>]] and [[>,>], [>,⊥], [>,>]]
embed to the set of all sequences beginning with >. The definition works around this by
picking the infimum, and since for every l : B∗∗ we have that 0 ≤ µ0(l) this infimum is
always well-defined for sets in A.14

2.3.3 Canonical Forms

In the previous subsection we set out all the definitions for the algebra A of boolean
sequence sets, and the measure µ from sets in the algebra to real numbers. Following
our program for applying measure theory, the next step is to prove that A is an algebra
and that (A, µ) is positive and countably additive. We will then be ready to apply the
extension theorem.

Unfortunately, the definitions of A and µ do not directly lend themselves to routine
proofs in the HOL theorem prover, most of which are performed using an induction scheme
of one kind or another.15 In particular, the definition of µ as the infimum of a set of real

14This follows immediately from the fact that we are working in the real numbers, though it will later
turn out that for every A ∈ A there is always an l : B∗∗ with embed l = A and µ0(l) = µ(A).

15One sizeable exception to this generalization is the theory of real analysis, where there is also no
induction scheme available.

40 CHAPTER 2. FORMALIZED PROBABILITY THEORY

numbers is particularly difficult to work with, since at least at first sight we have no idea
which boolean list lists that embed to a particular set in the algebra are resulting in the
small measures. We cannot even easily calculate µ(U), the measure of the whole algebra.
Even though embed [[]] = U and µ0([[]]) = 20 = 1, there may also be another l : B∗∗ with
embed l = U and µ0(l) < 1.

To resolve this, we introduce a (computable) canonicalization function canon : B∗∗ →
B∗∗.

Definition 21 Canonical Forms

` ∀ l. (2.58)

(∀ l′. embed l′ = embed l ⇐⇒ canon l′ = canon l) ∧
µ0(canon l) ≤ µ0(l)

` ∀ l. canonical l ⇐⇒ canon l = l (2.59)

In other words, the canonical form canon l is a representative of all boolean list lists that
embed to embed l, and the representative chosen has minimal measure.

This gives us a more tractable characterization of the measure µ:

` ∀ l. µ(embed l) = µ0(canon l) (2.60)

So to find the probability of a set A ∈ A, it suffices to find any l : B∗∗ with embed l = A,
evaluate canon l in the logic, and then deduce that µ(A) = µ0(canon l).

It is not necessary to describe in detail the HOL definition of canon and the subsequent
derivation of the characterizing property (2.58), but it may provide some insight to explain
the three steps of the canonicalization function canon:

1. The input list l is sorted according to an order defined on B∗.

2. If there is an element x of l that is a prefix of another element y of l, then y is removed
from l. This is a valid step (i.e., it preserves embed l) because embed y ⊂ embed x
(as can be seen from Definition 17).

3. Elements are merged with their twins, where the lists x and y are twins with parent
z if x = append z [>] and y = append z [⊥]. If elements x and y of l are twins with
parent z, then x is removed and y is replaced by z. This is also a valid step, since
embed z = embed x ∪ embed y.

The only difficulty is choosing the order function in step 1 so that the list is kept in order
after an application of step 3.16

The canonicalization algorithm is useful not only for evaluating measures, it also gives
us an induction principle on elements of the algebra A. Since elements of A correspond
to the underlying list type B∗∗, the standard list induction principle17 is also applicable,
but this does not fit well with the natural structure of our sequence space B∞, where we
would like to use the sequence operators shd and stl to reduce a goal to the induction
hypothesis. Here is the induction principle for lists in canonical form:

16Note that using sets instead of lists does not obviate the need for canonicalization, because elements
would still need to be merged with their twins.

17Captured by the theorem: ` ∀Q. Q([]) ∧ (∀h, t. Q(t)⇒ Q(cons h t)) ⇒ ∀ l. Q(l).

2.3. BERNOULLI(1
2
) SEQUENCES: ALGEBRA 41

Theorem 22 Canonical Form Induction Principle

` ∀Q. (2.61)

Q([]) ∧ Q([[]]) ∧
(∀ l, l′.

canonical l ∧ canonical l′ ∧ Q(l) ∧ Q(l′) ∧
canonical (append (map (cons >) l) (map (cons ⊥) l′)) ⇒
Q(append (map (cons >) l) (map (cons ⊥) l′))) ⇒
∀ l. canonical l ⇒ Q(l)

The base cases are the lists [] (embedding to the empty set) and [[]] (embedding to
the whole space U); the step case builds a list in canonical form from two others l, l′. For
many goals we can prove the step case with a case split on the head of some sequence,
followed by some rewriting with l or l′ as appropriate.

2.3.4 Properties of (A, µ)

The first application of the canonical form induction principle is to show that A is an
algebra, satisfying the HOL definition of an algebra we made in Definition 4. The proof
of this in HOL is instructive in its use of the induction principle, and so we give a sketch.

Theorem 23 A is an Algebra

` algebra A (2.62)

Proof: It is clear that ∅ ∈ A (from the embedding of []), and given two sets A,B ∈ A
which were embedded from the lists lA, lB, it is easy to see that the list append lA lB embeds
to the union A ∪ B. The only difficulty is to show that A is closed under complements.
Suppose we have A ∈ A which embeds from the list lA. Since A is also the embedding
of canon lA, we can assume that lA is in canonical form. If it is either [] or [[]] then the
other embeds to Ac, so we may assume that there exist l, l′ with

lA = append (map (cons >) l) (map (cons ⊥) l′)

By the induction hypothesis the embedding of l has a complement in A, say it was
embedded from the list lc. Similarly there exists l′c for l′. It is now not difficult to show
that

append (map (cons >) lc) (map (cons ⊥) l′c)

embeds to Ac, as required. 2

Using similar arguments, we prove that (A, µ) is positive, additive, and even countably
additive. This last follows from a neat property of the algebra A:

` ∀ f. (2.63)

f ∈ (UN
·→ A) ∧ (∀m,n. m 6= n⇒ f(m) ∩ f(n) = ∅) ∧(⋃

n∈UN

f(n)
)
∈ A ⇒

∃N. ∀n. N ≤ n⇒ f(n) = ∅

42 CHAPTER 2. FORMALIZED PROBABILITY THEORY

Any countable sequence of disjoint sets in A that union to a set in A contains only a finite
number of non-empty sets. Thus in the case of (A, µ), countable additivity collapses to
additivity.

An interesting property we prove is that the measure µ has an upper bound of 1:

` ∀A. A ∈ A ⇒ µ(A) ≤ 1 (2.64)

This is a special case of Kraft’s Inequality (Goldie and Pinch, 1991):

∀C.
∑
w∈C

a−(length w) ≤ 1 (2.65)

which holds for all prefix-free codes C where the alphabet has a symbols, and exactly
formulates the balance between keeping the code prefix-free and having many short code
words. In our situation we have ‘code words’ of boolean lists (so a = 2), and for the
purpose of calculating µ we can assume that our ‘code’ is in canonical form (and hence
prefix-free).

2.4 Bernoulli(1
2) Sequences: Probability Space

2.4.1 The Need for σ-algebras

In the previous section we defined an algebra A with associated measure µ, established
an induction principle to expedite proofs in the algebra, and proved that (A, µ) satisfies
the basic properties of measures.

For a probabilistic program f : B∞ → α × B∞ that is guaranteed to terminate, all of
the interesting behaviour of f can be captured using sets of A.18 In a previous version
of our probability theory (Hurd, 2000), we were able to verify some simple probabilistic
programs using only (A, µ).

However, probabilistic programs that are guaranteed to terminate are a relatively small
class, and there are many interesting programs that cannot be expressed with this restric-
tion. An example is the program f that scans the input sequence for the first occurrence
of a ⊥, and returns the index (counting from 0) of this ⊥ within the sequence.19 Although
the probability that f terminates is 1, termination is nevertheless not guaranteed: the
sequence (>,>, . . .) results in divergence.20 Now consider the set S of input sequences
that result in f returning an even number:

S = prefix set [⊥] ∪ prefix set [>,>,⊥] ∪ prefix set [>,>,>,>,⊥] ∪ · · ·

Although S is a countable union of sets in A, it is not itself a set in A. Therefore, since
µ is only defined on sets in A, we cannot speak of the probability µ(S) that f returns an
even number. On the other hand, σ-algebras are closed under countable unions, so if we

18If f is guaranteed to terminate then there is a number n such that whatever sequence s is input to
f , no more than the initial n bits of s will be used by f to calculate a result.

19This is the Geometric(1
2) distribution, and we study this in detail in Section 4.4.

20Using the argument of Footnote 18, the fact that the set of possible results forms an infinite set also
proves that f cannot be guaranteed to terminate.

2.4. BERNOULLI(1
2
) SEQUENCES: PROBABILITY SPACE 43

extend the measure µ to be defined on σ(A), then S is an event and the probability of S
becomes meaningful.

The conclusion is that A allows us to reason about probabilistic programs that are
guaranteed to terminate, but σ(A) is required to reason about programs that terminate
with probability 1.

2.4.2 Definition of the Probability Space

The properties of (A, µ) established in Section 2.3.4 are precisely the conditions required
by Carathéodory’s extension theorem, which we formalized in Section 2.2.2. Applying the
theorem, we can define the probability space (E ,P) and prove the following characterizing
theorem.

Definition 24 The Probability Space of Bernoulli(1
2
) Sequences

` prob space (E ,P) ∧ (E = sigma A) ∧ (2.66)

∀A. A ∈ A ⇒ P(A) = µ(A)

Now using the properties of probability spaces, some standard theorems follow, in-
cluding the result that any countable set of sequences has probability 0:

` ∀A. countable A ⇒ A ∈ E ∧ P(A) = 0 (2.67)

Therefore, for any event E ∈ E , adding or taking away a countable set of sequences does
not change the probability of E. In particular, if we start with the whole space U , and for
every list l : B∗ we remove the sequence with initial segment l and continuing (>,>, . . .),
then the set Θ we are left with still has probability 1.21

This result justifies the intuition we gain by the identification of bit sequences with
real numbers via the binary expansion

(x0, x1, x2, . . .)
φ−→ 0. x0 x1 x2 · · ·

even though there are some distinct sequences (such as (0, 1, 1, 1, . . .) and (1, 0, 0, 0, . . .))
that map to the same real number.22 The set Θ, an event of probability 1, is in one-
to-one correspondence with the real numbers in the interval [0, 1).23 Though we do not
pursue the consequences of this here, it is possible to define Lebesgue integration for a set
S ⊂ [0, 1] of reals by

Leb(S) = P(preimage φ S)

We now prove some important properties of the sequence operations, showing how
they map events and change their probabilities. The proof technique is always the same:

21This result is the intuitively correct one. In our previous version of probability theory (Hurd, 2000)
where we were limited to (A, µ), we defined the probability of a set B to be the supremum of all µ(A)
where A ∈ A and A ⊂ B. Unfortunately, the only set in A that is a subset of Θ is the empty set, and so
the probability of Θ was set to 0.

22This same complication rears its ugly head in the proof of Cantor’s theorem that the real numbers
are uncountable, which is why proofs normally use decimal expansions!

23This is from (Williams, 1991, page 42): every real number in (0, 1) has one bit sequence mapping to
it, except for the dyadic rationals which have two. The sequences missing from the set Θ are easily seen
to be in one-to-one correspondence with the dyadic rationals.

44 CHAPTER 2. FORMALIZED PROBABILITY THEORY

use the theorems of Section 2.2.3 to reduce a property over E to a property over A, and
from there use the canonical form induction principle of Section 2.3.3.

Firstly, we tackle measurability and stronger properties of eventhood:

` ∀ b. {s | shd s = b} ∈ E (2.68)

` ∀E. preimage stl E ∈ E ⇐⇒ E ∈ E (2.69)

` ∀E. E ∈ E ⇒ image stl E ∈ E (2.70)

` ∀E, n. preimage (sdrop n) E ∈ E ⇐⇒ E ∈ E (2.71)

` ∀E, n. E ∈ E ⇒ image (sdrop n) E ∈ E (2.72)

` ∀ b. scons b ∈ measurable E E (2.73)

` ∀E, b. image (scons b) E ∈ E ⇐⇒ E ∈ E (2.74)

` ∀E. preimage mirror E ∈ E ⇐⇒ E ∈ E (2.75)

These theorems are all as strong as possible, counter-intuitive though this may appear.
For example, the plausible-looking statement

image stl E ∈ E ⇒ E ∈ E

fails because of the counterexample

E = image (scons >) U ∪ image (scons ⊥) Ω

where Ω is any non-measurable set (we shall explicitly construct a non-measurable set in
Section 2.4.3). The image of E under stl is U ∈ E , but if E were measurable then using
theorems (2.68) and (2.74) it would be possible to show that Ω was measurable.

Note that we do not need a theorem about images of mirror, because

` image mirror = preimage mirror (2.76)

We also prove some probability preservation properties:

` ∀ b. P {s | shd s = b} = 1
2

(2.77)

` stl ∈ prob preserving E E (2.78)

` ∀n. sdrop n ∈ prob preserving E E (2.79)

` mirror ∈ prob preserving E E (2.80)

` ∀E. (2.81)

E ∈ E ∧ image mirror E = E ⇒ P(image stl E) = P(E)

Finally, once we have the basic properties of the sequence operations, we can prove
the following two theorems:

` ∀n. P {s | shd (sdrop n s)} = 1
2

(2.82)

` ∀m,n. (2.83)

P {s | shd (sdrop m s) = shd (sdrop n s)} = if m = n then 1 else 1
2

These say that the probability of any random bit being 1 is 1
2

(2.82), and the probability
of two distinct random bits being equal is also 1

2
(2.83). Since these are the results we

would expect for a sequence of coin flips, this gives us confidence that the probability
space (E ,P) we have defined in this section is a good model for a random bit generator.

2.4. BERNOULLI(1
2
) SEQUENCES: PROBABILITY SPACE 45

2.4.3 Construction of a Non-Measurable Set

The purpose of this section is to define a set Ω of sequences, and prove the theorem

` Ω /∈ E (2.84)

that Ω is not an event of our probability space.
This represents a digression from the focus of this chapter, which is to formalize theory

that will support verifications of probabilistic programs. It is, however, a theoretically
important result, justifying the route through measure theory that our theory has taken,
and providing a tool for generating counter-examples. Ironically, since σ-algebras are
so successful at capturing the events of interest to probability theory, it is not easy to
construct a set that is provably not an event.

We adapt a construction in Williams (1991, page 192) of a non-measurable set A ⊂ S1,
where S1 is the unit circle. The argument begins as follows:

. . . we use the Axiom of Choice to show that

S1 =
⋃
q∈Q

Aq

where the Aq are disjoint sets, each of which may be obtained from any of the others
by rotation. If the set A = A0 has a ‘length’, then it is intuitively clear that [the
above result] would force

2π =∞× length(A),

an impossibility.

The important parts of this are:

1. The Axiom of Choice is used to construct the non-measurable set A.

2. There is a mapping that deterministically changes the measure of sets (in this case
rotations preserve length).

3. The whole space is written as a disjoint union of countably many rotations of A.

We now transfer these ideas to sets of boolean sequences. For step 1 of the above
outline we use the eventually relation between sequences.

Definition 25 The ‘Eventually’ Sequence Relation

` ∀x, y. eventually x y = ∃n. sdrop n x = sdrop n y (2.85)

The sequence x is eventually the sequence y if they disagree only on some initial segment;
eventually can be shown to be an equivalence relation.

Definition 26 A Non-Measurable Set

` ∀x. ∃! y. eventually x y ∧ y ∈ Ω (2.86)

46 CHAPTER 2. FORMALIZED PROBABILITY THEORY

The set Ω consists of equivalence class representatives of the eventually relation.24

For step 2, we consider the sequence of sets

Ωn = preimage (sdrop n) (image (sdrop n) Ω)

Assuming Ω is an event, and using theorems (2.79) and (2.81), it can be shown that

P(Ωn) = 2nP(Ω)

Since probabilities are always bounded above by 1, we must have that

P(Ω) = 0

For step 3, we first prove a lemma that the sequence Ωn monotonically converges to
the whole space U , or

Ωn ⊂ Ωn+1 ∧ U =
⋃

n∈UN

Ωn

Now the Monotone Convergence Theorem may be applied, allowing

0 = lim
n→∞

0 = lim
n→∞

2nP(Ω) = lim
n→∞

P(Ωn) = P(U) = 1

and we may conclude that Ω is not an event of the probability space.

2.4.4 Probabilistic Quantifiers

In probability textbooks, it is common to find many theorems with the qualifier ‘almost
surely’, ‘with probability 1’ or just ‘w.p. 1’. Intuitively, this means that the set of points
for which the theorem is true has probability 1 (the set and the probability space usually
being implied by context). We can define probabilistic versions of the ∀ and ∃ quantifiers
that make this notation precise.25

Definition 27 Probabilistic Quantifiers

` ∀φ. (∀∗s. φ(s)) = {s | φ(s)} ∈ E ∧ P {s | φ(s)} = 1 (2.88)

` ∀φ. (∃∗s. φ(s)) = {s | φ(s)} ∈ E ∧ P {s | φ(s)} 6= 0 (2.89)

As noted by Harrison (1996a) on the subject of variable binding in mathematics,
“[formalization] really can be valuable, confronting us with awkward constructs where the
everyday notation confuses free and bound variables or a function with its value.” Here
we have an opportunity of making precise a (potentially) confusing everyday notation, but
the familiar use of quantifiers for binding avoids the necessity of an awkward construct.

24Theorem (2.86) is a characterizing theorem; the actual definition of Ω explicitly invokes the Axiom
of Choice (in the form of Hilbert’s choice operator ε):

` Ω = image (λ x. ε y. eventually x y) U (2.87)

25We pronounce ∀∗ as “probably” and ∃∗ as “possibly”.

2.4. BERNOULLI(1
2
) SEQUENCES: PROBABILITY SPACE 47

It might be hoped that the probabilistic quantifiers can be manipulated and exchanged
much like their standard counterparts, but unfortunately the analysis is considerably more
complicated. Firstly, since we must explicitly include a condition of measurability in the
definition of each quantifier,26 ∀∗ and ∃∗ are not dual to each other. Keisler (1985) has
defined a simple logic where ‘probability quantifiers’ replace the standard ones, but duality
is preserved because every formula results in a measurable set. As we saw in Section 2.4.3,
higher-order logic is more expressive than this.

Secondly, even when duality is not relevant, simple operations can raise deep compli-
cations. Consider exchanging two ∀∗ quantifiers:

∀∗ s. ∀∗ t. φ(s, t) = ∀∗ t. ∀∗ s. φ(s, t) (2.90)

In Keisler’s logic, he notes a case where exchanging two probability quantifiers is not a
valid operation,27 but the counterexample he gives involves probabilities strictly between 0
and 1, so it might be hoped that equation (2.90) would still hold. Unfortunately, a result
of Sierpinski shows that the continuum hypothesis is equivalent to the existence of a set
S ⊂ R2 with the following properties:

• For all y, the sets {x | (x, y) ∈ S} are countable.

• For all x, the sets {y | (x, y) ∈ S} are co-countable.28

Therefore, a counterexample to equation (2.90) can be found by defining

φ(s, t) = (s̄, t̄) ∈ S

where s̄ is the real number with binary expansion s. Since this counterexample relies on
the continuum hypothesis, which is independent of ZFC (and therefore HOL), it is not
possible to use this to prove in HOL the negation of equation (2.90). However, it most
certainly does stop us from proving equation (2.90), and does not rule out the possibility
that a proof of the negation exists.

We can at least prove one useful theorem about exchanging probabilistic and standard
quantifiers

` ∀φ,A. (2.91)

countable A ∧ (∀x ∈ A. ∀∗y. φ x y) ⇒ ∀∗y. ∀x ∈ A. φ x y

which we will use in Section 3.3.3 as part of a useful proof technique for establishing
properties of probabilistic while loops. Note that the countability condition is required,
or else we could exchange the quantifiers in

` ∀x ∈ U . ∀∗s. s 6= x (2.92)

26Or else theorems such as ∀∗s. s ∈ Ω would be provable, and we could deduce very little from a
∀∗-quantified theorem.

27“The reader can check that no two of the sentences

(Px ≥ 1
2)(Py ≥ 1

2)R(x, y) (Py ≥ 1
2)(Px ≥ 1

2)R(x, y) (Pxy ≥ 1
4)R(x, y)

are equivalent. (Consider structures with three elements of measure 1
3 .)”

28A set A ⊂ R is co-countable if R−A is countable.

48 CHAPTER 2. FORMALIZED PROBABILITY THEORY

to get
∀∗s. ∀x. s 6= x

which is equivalent to

(∀∗s. ⊥) ⇐⇒ ∅ ∈ E ∧ (P(∅) = 1) ⇐⇒ >∧ (0 = 1) ⇐⇒ ⊥

So far we have presented these probabilistic quantifiers as a notational device, a precise
and still intuitive version of the tag ‘with probability 1’. However, we have discovered one
situation where the use of ∀∗ represents more than just a useful shorthand: it also speeds
up the proof. The technique uses a lifting theorem for ∀∗-quantified properties.

Theorem 28 The ∀∗-lifting Theorem.

` ∀φ,E,E ′. (2.93)

E ∈ E ∧ E ′ ∈ E ∧ ∀∗φ ∧ (∀x. φ(x)⇒ (x ∈ E ⇐⇒ x ∈ E ′)) ⇒
P(E) = P(E ′)

This says that that the probability of the set E is equal to the probability of E ′ if
we can transform E to E ′ by regarding as universally true any probabilistic universally
quantified property φ. In this way a ∀∗-theorem gets lifted to a ∀-theorem in the argument
of a P.29

Example: Suppose we wish to prove

P {s | shd s ∧ s 6= y} = P {s | shd s}

By specializing the ∀∗-lifting theorem to the ∀∗-quantified property in theorem (2.92)
above, it remains only to prove that

{s | shd s ∧ s 6= y} ∈ E ∧ {s | shd s} ∈ E ∧
∀x. x 6= y ⇒ (x ∈ {s | shd s ∧ s 6= y} ⇐⇒ x ∈ {s | shd s})

which is easily accomplished using the measurability properties of shd. 2

Before we proved the ∀∗-lifting theorem, we would have to prove these kind of results
by explicitly constructing an event S of probability 1, and then use set operations to show

P(E) = P(E ∩ S) = P(E ′ ∩ S) = P(E ′)

In our experience, this ‘bare-hands’ approach generally results in more work.

2.5 Concluding Remarks

The main result of this chapter is the measure-theoretic construction of the probability
space (E ,P). Chapter 3 will use the properties of (E ,P) we have formalized to specify and
verify some probabilistic algorithms.

29Another way of seeing the ∀∗-lifting theorem is as a congruence rule for P, though it can’t be given
to a HOL simplifier in its current form with φ left unspecified.

2.5. CONCLUDING REMARKS 49

There have been several semantics of probabilistic programs presented in the literature
of theoretical computer science. Most of them use measure theory in a more or less
direct way, to avoid falling into the logical inconsistencies of the Banach-Tarski paradox.
Therefore, to formalize one of these semantics in a theorem prover, measure theory (or
a particular specialization) must be formalized also. This is the novelty of this chapter:
measure theory as a definitional extension of higher-order logic, intended to support our
own simple semantics of probabilistic programs.

Much of the technical work in this chapter was anticipated in the Mizar develop-
ments of Nȩdzusiak (1989) and Bia las (1990), but there are many situations (such as
Carathéodory’s extension theorem) in which we have had to go a little further into the
theory to extract the particular theorems that our application requires. The formal con-
struction of a non-measurable set is a novelty, as is the introduction of probabilistic
quantifiers into a standard logic.

Our formalized probability theory allows us to express both standard logical truths and
probabilistic statements in higher-order logic. There has been some theoretical work on
the various techniques of combining various (first-order) logics and probability to achieve
this effect: papers of Halpern (1990) and Abadi and Halpern (1994) give some decidability
and complexity results. Another approach is taken in the fuzzy logic of Zadeh (1965),
where the truth values are extended from the booleans {⊥,>} ∼= {0, 1} to the whole
real interval [0, 1]. The logical connectives are also extended to operate over the larger
domain: although this extension is necessarily rather arbitrary, there are nevertheless
many control systems that internally make use of fuzzy logic to operate robustly in a
changing environment. There is also a probabilistic logic due to Nilsson (1986), which is
a version of fuzzy logic where the truth values correspond to probabilities. In this case
the logical connectives are not simple functions of real numbers, instead the entailment
relation must be calculated by multiplying matrices together.

We used the hol98 theorem prover to do this work, creating a purely definitional
theory to ensure soundness (in common with most other hol98 theories). Particularly
important for this work were the theories of real numbers (created by Harrison (1998))
and predicate sets, although of course we found invaluable the basic theories of arithmetic,
lists, well-founded recursion and the like. The built-in proof tools of hol98 sped up the
whole development, which makes heavy use of the simplifier, first-order prover and real
number decision procedure. However, although these tools make a big difference to the
task of ‘proving the current subgoal’, we should not forget the higher-level issues that also
sped up this development:

• Picking the right higher-order logic types to represent our objects. It would perhaps
have been more natural to model bit sequences with number sequences instead of the
boolean sequences we chose, but this would have resulted in extra well-formedness
conditions guaranteeing that only the numbers ‘1’ and ‘0’ were present.

• Higher-order theorems capturing common patterns of reasoning should be actively
sought. We ‘discovered’ the Canonical Form Induction Principle quite late in the
development, and when we cleaned up the proofs of the earlier theorems using
the new technique, the proof scripts shrunk dramatically and many lemmas were
rendered obsolete.

50 CHAPTER 2. FORMALIZED PROBABILITY THEORY

Chapter 3

Verifying Probabilistic Algorithms

We present a simple model of probabilistic algorithms in higher-order logic, in which it is
possible to express any program with access to a source of random bits. The formalization
of probability theory allows us to make meaningful specifications of these algorithms, and
we develop the formal framework to make verification in the theorem prover more straight-
forward. One novelty is a compositional property of probabilistic algorithms that implies
measurability and independence. Finally, we examine various schemes of probabilistic
termination with reference to our own probabilistic while loop.

3.1 Introduction

3.1.1 Motivating Probabilistic Algorithms

The study of probabilistic algorithms grew out of the Monte Carlo simulation methods
used in numerical analysis and statistical physics.1 The first formal model of probabilistic
computation was proposed in a paper of de Leeuw et al. (1955), followed by the pioneering
work of Rabin (1963), Karp (1976) and Gill (1977). Today probabilistic algorithms are
well-established in computer science, and there are many examples of simple probabilis-
tic algorithms that outperform all known deterministic alternatives. To illustrate this
phenomenon, which best conveys the advantages of probabilistic algorithms, consider the
following two problems:

1. Given two sets of polynomials over Q

{P1, . . . , Pm} and {Q1, . . . , Qn}

where each polynomial is represented by a list of the non-zero terms, we wish to
know if ∏

1≤i≤m

Pi 6=
∏

1≤i≤n

Qi

1An early example of Monte Carlo methods used in the sciences is the classic experiment of Buffon
(1777) where the value of π is approximated by repeatedly dropping a needle onto a surface marked with
parallel lines. If the lines are exactly one needle’s length apart, then the probability that the needle will
intersect a line is 2/π.

51

52 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

2. How can the pivot be picked in quicksort so that the sorting algorithm has a fast
expected running time?

Problem 1 is known in the complexity literature as Product Polynomial Inequiv-
alence. It has no known polynomial time solution,2 but it can be solved in expected
polynomial time:

• pick an x in some appropriately random fashion;

• evaluate each Pi and Qi at x;

• multiply together the two resulting collections of rationals, giving the values of the
product polynomials at x;

• if the values are different, then the product polynomials are different and the algo-
rithm terminates;

• if the values are the same, then we repeat the procedure.

It can be shown that if the product polynomials are inequivalent, then the expected
running time of this algorithm is polynomial (Schwartz, 1980).

In terms of complexity theory, Product Polynomial Inequivalence falls into a
class of problems called RP for Randomized Polynomial time. The class RP is defined to
be the set of languages L for which there is a Deterministic Turing Machine M equipped
with a source of random bits, such thatM runs in worst-case polynomial time and satisfies:

x ∈ L ⇒ P(M accepts x) ≥ 1
2

x /∈ L ⇒ P(M accepts x) = 0

The known inclusion relations between P, RP and NP are depicted in Figure 3.1 (taken
from Johnson, 1990). If any of these inclusions were known to be strict then it would
prove that P 6= NP, and if P = NP then all these classes collapse to P. There are no
problems known to be complete for RP, in the manner of NP-completeness.3

Problem 2 is deceptively hard to address, as discussed by Rabin (1976). The problem
is that the concept of expected running time depends on how the input data is distributed,
but we may have no knowledge of this. For every O(1)4 deterministic algorithm for picking
the pivot5 there is a small class of input permutations that result in O(n2) performance.
Since the distribution of the input data is not known, for the analysis we must assume
that inputs are always chosen from this bad class, and so the expected running time is
O(n2).

However, by introducing randomness into the algorithm, we can eliminate the class of
bad inputs by making the expected computation time the same for every input. In ran-
domized quicksort, we introduce the randomness by picking pivots uniformly at random.

2Note that directly calculating the product polynomials does not work, since the result may have
exponentially more non-zero terms.

3Relative to a random oracle, P = RP∩ co-RP = RP, and all are properly contained in NP. However,
oracles exist for which P 6= RP ∩ co-RP and RP ∩ co-RP 6= RP.

4The number of comparisons is our complexity measure, as usual for sorting algorithms.
5Median-of-three falls into this category.

3.1. INTRODUCTION 53

NP ∪ co-NP
↗ ↑ ↖

NP RP ∪ co-RP co-NP
↑ ↗ ↖ ↑

RP co-RP
↖ ↗

RP ∩ co-RP
↑
P

Figure 3.1: The Known Inclusion Relations between P, RP and NP.

Then, as shown in Motwani and Raghavan (1995), the expected number of comparisons
for every input permutation of size n is bounded above by 2nHn, where

Hn =
n∑

i=1

1

i
∼ lnn+O(1)

is the nth Harmonic number. Thus the expected running time of this version of quicksort
is O(n log n). The small class of O(n2) inputs in the deterministic version has been
replaced in the probabilistic version: for any input there is a small probability that O(n2)
comparisons will be required. However, this probability is not large enough to adversely
affect the overall expected time, and so for any input the expected number of comparisons
is the best-possible O(n log n).

3.1.2 Verifying Probabilistic Algorithms in Practice

As we saw in Section 1.3, probabilistic algorithms are hard to test using conventional
methods. It may therefore not come as much of a surprise that they are also harder
to implement correctly. A whole new class of errors become possible and one has to be
mathematically sophisticated to avoid them.

For example, consider the example of the randomized quicksort algorithm introduced
in the previous section. Suppose we have a faulty SML implementation of the algorithm,
in which the pivot index is selected as follows:

fun select_pivot_index n =
if n = 1 then 0
else if coin_flip () then n - 1
else select_pivot_index (n - 1)

The specification of randomized quicksort says that the pivot for the list [a0, . . . , an−1]
should be uniformly distributed (i.e., pick each element with equal probability), but this
selection method is much more likely to pick a later element of the list than an earlier
one. The effect of this bug is to reinstate a class of ‘bad inputs’ for the algorithm that
result in O(n2) expected performance: one such bad input being the pre-sorted list.

In the context of a large program, this might be a difficult bug to find, even if it did
significantly reduce the overall performance. The purpose of this chapter is to show how

54 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

formal methods may be applied to probabilistic algorithms, so that we can verify in a
mechanical theorem prover that a program conforms to a probabilistic specification.

Recall from Section 1.4 that we model a probabilistic ‘function’ f̂ : α→ β with a HOL
function

f : α→ B∞ → β × B∞

that explicitly passes around the sequence of random bits, using some in the computation
and passing back the unused bits. In Chapter 2 we defined the probability space (E ,P)
which allows us write specifications for probabilistic algorithms. For example, we can
formulate goals in the theorem prover such as

∀n. P {s | fst (prob program n s) = failure} ≤ 2−n (3.1)

to specify the operation of a certain prob program. In a certain theoretical sense, this solves
the problem of giving semantics to our modelling of probabilistic programs in higher-order
logic. However, we are interested in mechanically verifying real probabilistic algorithms,
and what is so far missing is a collection of proof techniques to make this as smooth as
possible. Upon attempting a typical verification, two difficulties quickly emerge:

1. Since the probability measure P is only defined on events (i.e., sets in E), much
effort is spent proving that the sets that arise in verification really are events.

2. Many verification goals reduce to the form

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · ·P(An) (3.2)

where the A1, A2, . . . , An are events produced by ‘probabilistic subroutines’. This
result follows from the independence of the events, and so a theory of ‘subroutine
independence’ is required.6

In addition, there is another deficiency with the theory up to this point: we have
presented no syntactic support for expressing probabilistic programs. So far we have
assumed they will be expressed directly in λ-calculus, explicitly passing around the bit
sequence. To illustrate why this is not satisfactory, consider the probabilistic program dice
which returns a number in the set {1, 2, 3, 4, 5, 6} uniformly at random. The probabilistic
program two dice that uses dice to return the sum of two dice can be expressed in λ-
calculus as7

two dice = λ s. let (x, s′)← dice s in
(
let (y, s′′)← dice s′ in (x+ y, s′′)

)
This notation, as well as being rather unwieldy, contains opportunities for mistakes by
confusing the three different versions of the random bit sequence. The ability to express
our probabilistic programs in a cleaner way is not just an aesthetic issue of little logical
significance. In fact, it clarifies the theory to the point where we can provide practical
solutions to the two main verification problems listed above.

6This boils down to ensuring that random bits are never re-used by different subroutines: the side-
conditions of the theorems we prove will enforce this property.

7It is true that the definition would be shorter if we had not used the syntactic sugar let v ← x in f v
for (λ v. f v) x. However, this only strengthens our basic point that better notation is required, since the
shorter version is even more difficult to comprehend.

3.1. INTRODUCTION 55

3.1.3 A Notation for Probabilistic Programs

A useful observation is that our modelling of probabilistic programs in higher-order logic
by ‘passing around the random-number generator’ is how probabilistic programs are
routinely written in pure functional languages such as Haskell8 (Wadler, 1992; Launch-
bury and Jones, 1994).9 In fact, probabilistic programs live in the more general state-
transforming monad,10 where the state that is transformed is the sequence of random
bits. Definition 29 gives the monadic operators, which can be used to combine state-
transforming programs with a minimum of notational clutter.

Definition 29 The state-transformer monadic operators unit and bind

` ∀ a, s. unit a s = (a, s) (3.3)

` ∀ f, g, s. bind f g s = let (x, s′)← f(s) in g x s′ (3.4)

unit is used to lift values to the monad, and bind is the monadic analogue of function
application.

For example, using unit and bind, our two dice program can be expressed concisely as

two dice = bind dice (λx. bind dice (λ y. unit (x+ y)))

Note that the sequence is never referred to directly, instead the unit and bind operators
pass it around behind the scenes.

In addition to providing an elegant notation in which to express probabilistic programs,
unit and bind can be used to test whether a property is compositional on probabilistic
programs.

Definition 30 A property Q : (B∞ → α × B∞) → B is compositional for probabilistic
programs if

1. For every a : α,
Q(unit a)

2. For every f : B∞ → α× B∞ and g : α→ B∞ → β × B∞,

Q(f) ∧ (∀ a. Q(g(a))) ⇒ Q(bind f g)

Therefore, by writing our probabilistic programs in state-transformer notation, we can
automatically break down compositional properties on the program to properties on the
components. For example, if Q is a compositional property and Q(dice) holds, then so
does Q(two dice).

In Section 3.2 we investigate the compositionality of the measurability and indepen-
dence properties for probabilistic programs. Measurability allows us to deduce that sets

8http://www.haskell.org
9With hindsight, it is not surprising that we developed the same model independently, since it is a

natural way to model state in an environment with no global variables.
10Monads are a notion from category theory, but happily no knowledge of category theory is required

to use the notation to write probabilistic programs.

56 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

of sequences defined by probabilistic programs really are events. An example of this is
the set

{s | fst (prob program n s) = failure}
that was part of the example specification (3.1). This set of sequences is guaranteed to
be an event if prob program is measurable. Independence allows us to decompose goals
containing the probability of an intersection (such as (3.2) above). The end result is a
compositional property of probabilistic programs called indep fn that implies measurability
and independence.

3.1.4 Probabilistic Termination

Many probabilistic algorithms cannot be guaranteed to terminate on any input sequence
of bits. For example, as we shall see in Section 4.3, no terminating algorithm exists
to generate uniform random numbers in the range {0, 1, . . . , n − 1} unless n is a power
of 2. Thus if we insist on guaranteed termination, then even the dice program cannot
be implemented. In practice then, the restriction of guaranteed termination is usually
relaxed to allow termination with probability 1. This means that the set of sequences
that cause a probabilistic program to terminate is an event and has probability 1.

In Section 3.3 we define a probabilistic while operator called prob while, with charac-
terizing theorem as shown in Definition 31.

Definition 31 A Probabilistic While Loop

` ∀ c, b. (3.5)

(∀ a. b(a) ∈ indep fn) ∧ prob while terminates c b ⇒
∀ a.

prob while c b a ∈ indep fn ∧
prob while c b a = if c(a) then bind (b(a)) (prob while c b) else unit a

The b parameter is a probabilistic program to advance the state, and has type α→ B∞ →
α × B∞. The c parameter is a deterministic condition on the state that decides whether
to perform another iteration, and has type α→ B.

We also define a prob while terminates condition requiring that for every initial state
a, the set of sequences that result in the condition c eventually being false is an event
of probability 1. As Definition 31 shows, this termination condition holding means that
prob while c b preserves the important indep fn property of b.

The prob while operator allows us to define in higher-order logic a large class of prob-
abilistic algorithms, and the propagation of the indep fn property allows us to assume
useful results of measurability and independence for each program in the class. However,
in practice it is difficult to verify that a particular probabilistic while loop satisfies its
specification. This is because the usual proof techniques of program correctness rely on
induction over the termination relation, but a probabilistic while loop is explicitly allowed
to run forever on some input sequences (as long as the set of those input sequences has
probability 0).

We remedy this in Section 3.3.3 by using a version of prob while c b called prob while cut c b n
containing an extra cut-off parameter n. In the cut-off version, if the condition c is still

3.2. MEASURABILITY AND INDEPENDENCE 57

true after n iterations of b then the loop terminates anyway. It is then possible to prove
the theorem that if a property holds for prob while cut c b n with probability 1 (for every
n), then it also holds for prob while c b with probability 1. The benefit of this to veri-
fication is that prob while cut c b n is a program that is guaranteed to terminate (in at
most n iterations), so the standard program correctness techniques apply, most usefully
induction on n. In this way some tricky probabilistic reasoning is reduced to a proof by
induction. An example of this reduction can be found in Section 4.4, in the verification
of a sampling algorithm for the Geometric(1

2
) distribution.

3.2 Measurability and Independence

3.2.1 Measurability

Recall from Section 2.2.3 that a function f is measurable F G if preimage f maps sets in G
to sets in F . To demonstrate the practical use of measurability, suppose that f : B∞ →
α× B∞ models a probabilistic function, and that

A = {x | snd (f x) ∈ B}

is a set that appears in the verification, where B is an event (i.e., is a member of E : the
set of events of the probability space). If we have that

(snd ◦ f) ∈ measurable E E

then we can immediately deduce that A ∈ E , since

A = preimage (snd ◦ f) B

In practice, we would like to know that11

(fst ◦ f) ∈ measurable E U ∧ (snd ◦ f) ∈ measurable E E (3.6)

so that we can additionally deduce that the preimage of any set of results of (the first
component of) f is an event. We extend the definition of measurability to probabilistic
programs by saying that f is measurable if it satisfies property (3.6).

It turns out that property (3.6) is compositional for probabilistic programs, in the
sense of Definition 30. It is trivial that unit a is measurable for all a; the difficulty is
showing that bind f g is measurable, given that f : B∞ → α × B∞ is measurable and
g(a) : B∞ → β × B∞ is measurable for every a : α.

The task is illustrated in Figure 3.2. We aim to show that

fst ◦ bind f g ∈ measurable E UP(β)

11This is the same as requiring that

f ∈ measurable E (U ⊗ E)

where U ⊗ E is the σ-algebra generated by the product sets

{A×B | A ∈ U ∧B ∈ E}

58 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

’b’a

EVEV

a

fst o f

fst o g a

snd o f

B

F(a)
E(a)

Figure 3.2: Is Measurability Compositional?

and so we take an arbitrary set B ∈ UP(β), and the goal is now to show that

preimage (fst ◦ bind f g) B

is an event (i.e., a set in E). For each a : α the set

E(a) = preimage (fst ◦ g(a)) B

is an event, by the measurability of g(a). Also, the set

F (a) = preimage (fst ◦ f) {a} ∩ preimage (snd ◦ f) (E(a))

is an event, by the measurability of f . Finally, the desired preimage can be written as

preimage (fst ◦ bind f g) B =
⋃

a∈Uα

F (a)

Now we would like to deduce that any union of events is an event, and be done. Un-
fortunately, this property of a σ-algebra is only true for countable unions. A sufficient
condition to carry the result then, is for the range of fst ◦ f to be countable, and this
follows from f being measurable by applying a result of Hansell (1971) in the theory of
non-separable analytic sets. However, this result would be a difficult one to formalize,
and so we instead make progress by strengthening the measurability property.

Definition 32 A function f : B∞ → α× B∞ is strongly measurable if

countable (range (fst ◦ f)) ∧ (3.7)

(fst ◦ f) ∈ measurable E U ∧ (snd ◦ f) ∈ measurable E E

Since countability of range is easily shown to be a compositional property, the above
argument shows that property (3.7) is compositional for probabilistic programs.

3.2. MEASURABILITY AND INDEPENDENCE 59

3.2.2 Function Independence

Recalling Definition 13 in Section 2.2.4 where we defined independence of both sets and
families of sets, we now extend this to independence of a function.

Definition 33 The set of independent functions f : B∞ → α× B∞

` indep function = (3.8)

{f |
indep families

(image (λA. preimage (fst ◦ f) A) UP(α))

(image (λE. preimage (snd ◦ f) E) E)}

Whereas the measurability of a function f : B∞ → α×B∞ is really only a sanity check,
independence corresponds to a very natural property of probabilistic programs. Consider
once more the dice probabilistic program, which returns an element of {1, 2, 3, 4, 5, 6}
uniformly at random. Define the function pair dice as follows:

pair dice = bind dice (λx. bind dice (λ y. unit (x, y))) (3.9)

Intuitively, we would expect that each of the 36 possible results

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 6)}

of pair dice would be equally likely. But this reasoning relies on a subtle assumption of
dice that was not explicitly stated: the returned result (i.e., dice roll) is independent of
the returned sequence. If this is true then our reasoning is valid, since the second call to
dice is not biased by the result of the first call. But consider this broken version of dice

broken dice = λ s. (fst (dice s), s)

that always returns the sequence that is passed in. If pair dice had called this instead of
dice, then the independence assumption is not valid, and in fact, only 6 results out of the
possible 36 can occur, namely

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

each one having probability 1/6.
Independence then, allows us to decompose our probabilistic program, calculate the

distribution of results for each individual subroutine, and then combine them with mul-
tiplication to give the distribution of results for the whole program.

Given this intended application for independence to reasoning about probabilistic
programs, it is therefore a pity that the independence property of Definition 33 is not
compositional. It is true that unit a is independent for every a, and also the sequence
operations12 sdest and scons b can be shown to be independent. But the following counter-
example13 proves that bind does not preserve independence:

f = sdest

g = λx. if x then (λ s. (>, scons > s) else (λ s. (⊥, scons ⊥ s))

12Recall from Section 2.3.1 that shd, stl and scons are the sequence analogues of the list operations hd,
tl and cons, and also sdest s = (shd s, stl s).

13Thanks to David Preiss for this counterexample.

60 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

[F]

[T, F]

[T, T, F]

[T, T, T, F]

TF

Figure 3.3: The Prefix Cover {[⊥], [>, ⊥], [>, >, ⊥], . . .}.

We can even prove the HOL theorem

` f ∈ indep function ∧ (∀x. g(x) ∈ indep function ∧ (3.10)

bind f g /∈ indep function

In the next section we recover from this setback by demonstrating a compositional
property that implies both function independence and measurability.

3.2.3 Strong Function Independence

We begin with the notion of a prefix cover: a set of non-overlapping prefixes that match
almost every boolean sequence.

Definition 34 Prefix Covers

` ∀C. (3.11)

prefix cover C =

(∀ l1, l2. l1 ∈ C ∧ l2 ∈ C ∧ l1 6= l2 ⇒ ¬(is prefix l1 l2) ∧

P
(⋃

l∈C

prefix set l
)

= 1 (3.12)

Some examples of prefix covers are

{[]}, {[>], [⊥]}, {[⊥], [>, ⊥], [>, >, ⊥], . . .}

(the last one being depicted in Figure 3.3). Some non-examples are

{}, {[>]}, {[], [>]}, {[>], [⊥], [>, >]}

We now define a property called indep fn, subsuming both measurability and indepen-
dence of a probabilistic function.

3.2. MEASURABILITY AND INDEPENDENCE 61

Definition 35 Strong Function Independence

` indep fn = (3.13)

{f |
countable (range (fst ◦ f)) ∧
(fst ◦ f) ∈ measurable E U ∧ (snd ◦ f) ∈ measurable E E ∧
∃C.

prefix cover C ∧
∀ l, s.
l ∈ C ∧ s ∈ prefix set l ⇒
f(s) = (fst (f(prefix seq l)), sdrop (length l) s)}

Since strong function independence is one of the most important concepts of the thesis,
let us take some time to understand its meaning. Firstly, it incorporates the measurability
property discussed in Section 3.2.1, which we showed to be compositional. In addition,
it says that there exists a prefix cover C, such that for each l ∈ C the function fst ◦ f is
constant on prefix set l, and the function snd ◦ f is sdrop (length l). This has a natural
interpretation when we consider f as a probabilistic program: if f uses some bits from
the sequence to compute its result, then these bits must be removed from the sequence
(using sdrop) before the sequence is passed back.

In an imperative language (such as C) where the random number generator is imple-
mented using global state, this property is automatically enforced. Whenever a random
bit is asked for, the global state in the random number generator is advanced at the
same time. However, modelling global state with state-transforming monads gives us the
extra ability to roll back the state to an earlier time. For some notions of state this may
be useful. But in the case where the state is a random number generator, the ability
to roll back the state is nothing more than an opportunity to shoot oneself in the foot.
Probabilistic programs are already hard to reason about, and re-using random numbers
introduces dependencies that tremendously complicate the analysis. An example of this
bad behaviour is the broken dice program of Section 3.2.2: in this case the rolling-back of
the random number generator produced a dice that always returned the same value!

Insisting that once random bits are used they are always thrown away would seem to
imply function independence, because the result sequence can never contain any informa-
tion about the result value. In fact, this can be made rigorous, yielding the first property
of strong function independence:

` indep fn ⊂ indep function (3.14)

Note there is some subtlety here: a function that is indep fn might behave badly on
sequences that are not in the prefix cover. However, by the definition of prefix cover, the
bad behaviour can only occur inside an event of probability 0, so does not affect the value
of any probabilities.

The second property of strong function independence is that it is not the same as
function independence. Setting

f = λ s. (shd s = shd (stl s), stl s)

62 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

we can prove the HOL theorems

` f ∈ indep function (3.15)

` f /∈ indep fn (3.16)

This f is ‘functionally equivalent’ to sdest, returning a (coin-flip) boolean and a sequence
that are independent of each other. The difference is that sdest satisfies strong function
independence, but f uses two bits from the sequence and only throws one away, violating
the property.

In practice, restricting ourselves to strongly independent functions does not cause any
problems. The independent functions that we exclude (such as f) are pathological exam-
ples; by definition they cannot be coded in an imperative language with a global random
number generator. In addition, as we showed in Section 3.2.2, function independence is
not compositional, so we should expect that some independent functions must be sacri-
ficed to make the property compositional. This is the third property of strong function
independence.

Theorem 36 Strong Function Independence is Compositional

` sdest ∈ indep fn (3.17)

` ∀ a. unit a ∈ indep fn (3.18)

` ∀ f, g. (3.19)

f ∈ indep fn ∧ (∀ a. g(a) ∈ indep fn) ⇒ bind f g ∈ indep fn

Proof: (Sketch) It is easily seen that the prefix cover {[>], [⊥]} provides the witness for
sdest, and similarly {[]} works for every unit a.

Turning our attention to bind: by hypothesis we have a prefix cover F for f , and for
every a we have a prefix cover G(a) for g(a). It can be shown that the set⋃

l∈F

⋃
l′∈G(fst (f(prefix seq l))) append l l′

is a prefix cover for bind f g. 2

This says that if we define a function f that accesses the random bit sequence using
only the sdest, unit and bind primitives, then f is guaranteed to satisfy strong function
independence. This already includes a significant number of real probabilistic programs,
and we shall see in Chapter 5 that it is both possible and desirable to fit the Miller-Rabin
probabilistic primality test into this class.

In addition, there are many properties that are satisfied by every strongly independent
function, and if proved at this level of abstraction then we can instantiate them to any
strongly independent function that appears in the verification. An example of such a
property is the following theorem:

` ∀ f1, f2, g1, g2, B. (3.20)

f1 ∈ indep fn ∧ f2 ∈ indep fn ∧
(∀ a. g1(a) ∈ indep fn) ∧ (∀ a. g2(a) ∈ indep fn) ∧
(∀ a. P {s | fst (f1(s)) = a} = P {s | fst (f2(s)) = a}) ∧
(∀ a. P {s | fst (g1 a s) ∈ B} = P {s | fst (g2 a s) ∈ B}) ⇒
P {s | fst (bind f1 g1 s) ∈ B} = P {s | fst (bind f2 g2 s) ∈ B}

3.3. PROBABILISTIC TERMINATION 63

From the conditions it is plain that strong function independence is essential to apply the
theorem, which allows us to show that the probability of two bind events can be reduced
to the probabilities of their component events. This came in useful during the verification
of the sampling algorithm for the Binomial(n, 1

2
) distribution (described in Section 4.2).

3.3 Probabilistic Termination

3.3.1 Probabilistic ‘While’ Loops

We now have all the machinery we need to define a probabilistic ‘while’ loop, where the
body of the while loop is a probabilistic function

b : α→ B∞ → α× B∞

that non-deterministically advances a state of type α, and the condition of the while loop
is a deterministic state predicate

c : α→ B
We first define a version of the probabilistic while loop with a cut-off parameter n: if

the condition is still true after n iterations, the loop terminates anyway.

Definition 37 Probabilistic While with a Cut-off

` ∀ c, b, n, a. (3.21)

prob while cut c b 0 a = unit a ∧
prob while cut c b (suc n) a =

if c(a) then bind (b(a)) (prob while cut c b n) else unit a

This cut-off version of probabilistic while does not employ probabilistic recursion.
Rather it uses standard recursion on the cut-off parameter n, and consequently the fol-
lowing properties are easily established by induction on n:

` ∀ c, b, n, a. (3.22)

(∀ a. b(a) ∈ indep fn) ⇒ prob while cut c b n a ∈ indep fn

` ∀ c, b, n, a, p. (3.23)

(∀ a. b(a) ∈ indep fn) ∧ (∀ a. P {s | c(fst (b a s))} ≤ p) ⇒
P {s | c(fst (prob while cut c b n a s))} ≤ pn

` ∀ c, b, n, a. (3.24)

prob while cut c b (suc n) a =

bind (prob while cut c b n a) (λ a′. if c(a′) then b(a′) else unit a′)

We now use prob while cut to make the ‘raw definition’ of prob while

` ∀ c, b, a, s. (3.25)

prob while c b a s =

if ∃n. ¬c(fst (prob while cut c b n a s)) then

prob while cut c b

(minimal (λn. ¬c(fst (prob while cut c b n a s)))) a s

else arb

64 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

where arb is an arbitrary fixed value. Our goal now is to prove the characterizing theorem
of prob while (given in Definition 31).

The first part of the characterizing theorem follows immediately.

Theorem 38

` ∀ c, b, a. (3.26)

prob while c b a = if c(a) then bind (b(a)) (prob while c b) else unit a

Proof: For given values of c, b, a and s, if there is some number of iterations of b
(starting in state a with sequence s) that would lead to the condition c becoming false,
then prob while performs the minimum number of iterations that are necessary for this to
occur, otherwise it returns arb. The proof now splits into the following cases:

• The condition eventually becomes false:

– The condition is false to start with: in this case the minimum number of
iterations for the condition to become false will be zero.

– The condition is not false to start with: in this case the minimum number of
iterations for the condition to become false will be greater than zero, and so
we can safely perform an iteration and then ask the question again.

• The condition will always be true: therefore, after performing one iteration the
condition will still always be true. So both LHS and RHS are equal to arb.

In each case theorem (3.26) follows. 2

Suppose that for every state a the function b(a) is strongly independent. Therefore,
for each a there exists a prefix cover B(a) for the function b(a). Intending C(a) to be a
prefix cover for prob while c b a, the family C(a) is defined to be the least fixed point of
the following rule induction:

¬c(a)

[] ∈ C(a)

c(a) ∧ l ∈ B(a) ∧ l′ ∈ C(fst (b a (prefix seq l)))

append l l′ ∈ C(a)

Example: Let the parameters of a probabilistic while loop be

c(a) = a

b(a) = sdest

B(a) = {[>], [⊥]}

Noting that in our example we have

c(>) ∧ ¬c(⊥) ∧ fst (b a (prefix seq l)) = hd l

let us use the first rule to assign

C(>) = ∅, C(⊥) = {[]}

3.3. PROBABILISTIC TERMINATION 65

T T

TT

3.

1. 2.

4.
[T, T, T, F]

[F] [F]

[F]
[T, T, F] [T, T, F]

[F]
F

[T, F]

F F

F

[T, F]

[T, F]

Figure 3.4: Iterations in the Rule Induction Example.

and try to find a fixed-point by using the second rule to add elements to these sets. After
one iteration of rule induction, we have

C(>) = {[⊥]}, C(⊥) = {[]}

since c(>), [⊥] ∈ B(>) and [] ∈ C(hd [⊥]). After two iterations we have

C(>) = {[⊥], [>, ⊥]}, C(⊥) = {[]}

since c(>), [>] ∈ B(>) and [⊥] ∈ C(hd [>]). After three iterations we have

C(>) = {[⊥], [>, ⊥], [>, >, ⊥}, C(⊥) = {[]}

since c(>), [>] ∈ B(>) and [>, ⊥] ∈ C(hd [>]). Continuing in this way, we end up with
the prefix covers

C(>) = {[⊥], [>, ⊥], [>, >, ⊥], . . .}, C(⊥) = {[]}

This example is illustrated in Figure 3.4. 2

The reader may have noticed that the above rule induction may result in sets C(a)
that are not prefix covers. An example of this occurs if the condition c is λ a. >, when
the least fixed point works out to be C(a) = ∅ for every a. It is essential for the union of
sets in a prefix cover to be an event of probability 1, and for this to be true the following
condition of c and b must hold:14

∀ a. P {s | ∃n. ¬c(fst (prob while cut c b n a s))} = 1

14The set in this probability is guaranteed to be an event, since prob while cut c b n a satisfies strong
function independence whenever b does.

66 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

This is plainly a (probabilistic) termination condition for the while loop, and so we wrap
up the property into the following definition, which uses our probabilistic quantifiers
(Section 2.4.4).

Definition 39

` ∀ c, b. (3.27)

prob while terminates c b =

∀ a. ∀∗s. ∃n. ¬c(fst (prob while cut c b n a s))

This condition ensures that a prefix cover exists, and therefore that probabilistic while
loops satisfy strong function independence:

` ∀ c, b. (3.28)

(∀ a. b(a) ∈ indep fn) ∧ prob while terminates c b ⇒
∀ a. prob while c b a ∈ indep fn

and we have now justified the characterizing theorem of prob while that we gave in Defi-
nition 31 (Section 3.1.4).

3.3.2 Probabilistic Termination Conditions

In the previous section we saw that a probabilistic termination condition was needed to
prove that a probabilistic while loop satisfied strong function independence. In this section
we take a closer look at this condition, in the context of related work on termination.

First, let us consider the deterministic case. As described by Slind (1999), we can use
the HOL function definition package (called TFL) to define a while operator as follows:

while c b a = if c(a) then while c b (b(a)) else a

TFL automatically extracts the termination condition15

∃R. WF R ∧ ∀ a. c(a)⇒ R (b(a)) a

where WF R means that the relation R is well-founded. This is equivalent to16

∀ a. ∃n. ¬c(funpow b n a) (3.29)

which is a deterministic version of our prob while terminates c b condition (Definition 39).
It can be easily seen that condition (3.29) is both necessary and sufficient for while c b to
terminate on every input a, and a corresponding theorem is true in the probabilistic case.

Theorem 40 The condition prob while terminates c b is both necessary and sufficient for
each prob while c b a to terminate on a set of probability 1.

15Note that TFL must be told to treat this definition as schematic in c and b, or else the extracted
termination condition will be unprovable.

16To see the equivalence, the number n corresponds to the ‘height’ of a in R (well-defined since R is
well-founded).

3.3. PROBABILISTIC TERMINATION 67

Although it is proper for our definition of probabilistic termination to be necessary
and sufficient, in practice it is often easier to show the following simpler condition:

` ∀ c, b. (3.30)

(∀ a. b(a) ∈ indep fn) ∧ (∃∗s. ∀ a. ¬c(fst (b a s))) ⇒
prob while terminates c b

This requires an event E with non-zero probability, such that for every state a, if the
input sequence s comes from E then the loop will terminate after one more iteration.

It may seem plausible that we could instead use the condition

∀ a. ∃∗s. ¬c(fst (b a s)))

so that for each state a we could use a different event E(a) (each with non-zero probabil-
ity). Unfortunately this does not quite work. A counterexample is the probabilistic while
loop with parameters

c(n, b) = b

b(n, b) = bind (uniform 2n) (λx. (n+ 1, 0 < x))

where uniform n returns a number from the set {0, . . . , n− 1} uniformly at random (Sec-
tion 4.3). From the start state (n, b), the (non-zero) probability that the loop will termi-
nate after the next iteration is 2−n, but the probability that the loop will ever terminate
is

if b then
(∞∑

m=n

2−m
)

else 1

which works out to 1
2

for the start state (2,>).
In the context of probabilistic concurrent systems, the following 0-1 law was proved

by Hart et al. (1983):17

Let process P be defined over a state space S, and suppose that from every state
in some subset S′ of S the probability of P ’s eventual escape from S′ is at least p,
for some fixed 0 < p.

Then P ’s escape from S′ is certain, occurring with probability 1.

Identifying P with prob while c b and S ′ with the set of states a for which c(a) holds, we
can formulate the 0-1 law as an equivalent condition for probabilistic termination:

Theorem 41 The 0-1 Law of Probabilistic Termination

` ∀ c, b. (3.31)

(∀ a. b(a) ∈ indep fn) ⇒
(prob while terminates c b ⇐⇒
∃ p. 0 < p ∧ ∀ a. p ≤ P {s | ∃n. ¬c(fst (prob while cut c b n a s))})

17This paraphrasing comes from Morgan (1996).

68 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

This interesting result implies that over the whole state space, the infimum of all the
termination probabilities is either 0 or 1, it cannot lie properly in between. To see this,
recall that prob while cut c b means that all states terminate with probability 1, but the
negation of the RHS means that there is a state that terminates with probability 0. An
example of its use for proving probabilistic termination can be found in our verification
of a sampling algorithm for the Bernoulli(p) distribution (Section 4.5).

Hart et al. (1983) also established a sufficient condition for probabilistic termination
called the probabilistic variant rule. This has been used by Morgan (1996) to show
the termination of a probabilistic self-stabilization algorithm of Herman (1990). We can
formalize this as a sufficient condition for termination of our probabilistic while loops; the
proof is relatively easy from the 0-1 law.

Theorem 42 The Probabilistic Variant Condition

` ∀ c, b. (3.32)

(∀ a. b(a) ∈ indep fn) ∧
(∃ f,N, p.

0 < p ∧
∀ a. c(a) ⇒ f(a) < N ∧ p ≤ P {s | f(fst (b a s)) < f(a)}) ⇒

prob while terminates c b

As its name suggests, the probabilistic variant condition is a probabilistic analogue of
the variant method used to prove termination of deterministic while loops. If we can assign
to each state a a natural number measure from a finite set, and if each iteration of the
loop has probability at least p of decreasing the measure, then probabilistic termination
is assured. In addition, when {a | c(a)} is finite, condition (3.32) has been shown to be
necessary as well as sufficient.

3.3.3 Proof Techniques for Probabilistic While Loops

In this section we consider how to prove some properties of probabilistic while loops that
typically arise in verification. From the way we defined prob while we know that it satisfies
strong function independence when it can be shown to terminate, and the mechanics of
doing that were covered in the previous section. However, it turns out to be difficult in
practice to show basic properties that are not immediate consequences of strong function
independence.

Consider the following program G that lies at the heart of the Geometric(1
2
) sampling

algorithm (Section 4.4):

C = λ (a,m). a

B = λ (a,m). bind sdest (λ a′. unit (a′,m+ 1))

G = prob while C B

The plausible property that G never decreases the second component of the state

∀ a,m, s. m ≤ snd (G (a,m) s)

3.3. PROBABILISTIC TERMINATION 69

is not provable. The reason is that there may be sequences (in this case (>,>, . . .) is the
only example) on which G does not terminate, and so nothing can be said of its result.
The correct property is

∀ a,m. ∀∗s. m ≤ snd (G (a,m) s)

but even this turns out to be hard to prove. Often when showing program correctness
it is desirable to induct on the termination relation. However, this is not well-founded
for our probabilistic while loops, which are explicitly allowed to run forever (so long as
the set of sequences on which they terminate has probability 1). Continuing this train of
thought, it sounds reasonable that we might be able to use induction on a termination
relation to show properties that are true with probability 1, and indeed this is what the
following theorem allows us to do.

Theorem 43 Reduction Theorem for Probabilistic While Loops

` ∀φ, c, b, a. (3.33)

(∀ a. b(a) ∈ indep fn) ∧ prob while terminates c b ∧
(∀∗s. ∀n.
¬c(fst (prob while cut c b n a s))⇒
φ(fst (prob while cut c b n a s))) ⇒
∀∗s. φ(fst (prob while c b a s))

Proof: The proof uses the following chain of equalities:

1 = P {s | ∃n. ¬c(fst (prob while cut c b n a s))}

= P
{
s

∣∣∣∣ ∃n. ¬c(fst (prob while cut c b n a s)) ∧
φ(fst (prob while cut c b n a s))

}

= P

s
∣∣∣∣∣∣ ∃n.

φ(fst (prob while c b a s)) ∧
φ(fst (prob while cut c b n a s)) ∧
¬c(fst (prob while cut c b n a s))

= P

{
s

∣∣∣∣ ∃n. φ(fst (prob while c b a s)) ∧
¬c(fst (prob while cut c b n a s))

}
= P {s | φ(fst (prob while c b a s))}

The first two and the last two probabilities are proved equal using the ∀∗ lifting theorem
of Section 2.4.4. 2

Now we may complete our example by applying the above reduction theorem, since
the generated subgoal

∀∗s. ∀n.
¬c(fst (prob while cut C B n (a,m) s))⇒
m ≤ (fst (prob while cut C B n (a,m) s))

is further broken down with an application of the quantifier exchange theorem (2.91) of

70 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

Section 2.4.4. This yields

countable UN ∧
∀n. ∀∗s.
¬c(fst (prob while cut C B n (a,m) s))⇒
m ≤ (fst (prob while cut C B n (a,m) s))

which is dispatched by induction on n and standard techniques.
This example completely illustrates the technique of proving non-trivial properties

of probabilistic while loops. The important point is that a difficult proof to reduce a
property of unbounded iterations of prob while to the bounded prob while cut need only
be performed once, and packaged up as a higher-order theorem for future application.

One noteworthy special case of Theorem 43 is the ‘post-condition’ result of probabilis-
tic while loops.

` ∀ c, b, a. (3.34)

(∀ a. b(a) ∈ indep fn) ∧ prob while terminates c b ⇒
∀∗s. ¬c(fst (prob while c b a s))

Finally, no formal definition of a new while loop would be complete without a Hoare-
style while rule, and the following can also be proved from Theorem 43.

` ∀φ, c, b, a. (3.35)

(∀ a. b(a) ∈ indep fn) ∧ prob while terminates c b ∧
φ(a) ∧ (∀ a. ∀∗ s. φ(a) ∧ c(a)⇒ φ(fst (b a s))) ⇒
∀∗s. φ(fst (prob while c b a s))

3.3.4 Probabilistic ‘Until’ Loops

To complete this section on probabilistic looping, we shall show how a useful probabilistic
repeat. . . until construct may be defined in terms of probabilistic while loops, and the
properties that follow as consequences of the general theorems we have proved.

Definition 44 Probabilistic Until Loop

` ∀ b, c. prob until b c = bind b (prob while (¬ ◦ c) (K b)) (3.36)

For example, the program

` trichotomy = (3.37)

prob until (bind sdest (λx. bind sdest (λ y. unit (x, y)))) (λ(x, y). x ∨ y)

will repeatedly extract pairs of bits from the random sequence until at least one of the
pair is > (i.e., it will keep rejecting (⊥,⊥)).

The right termination condition for a prob until program is not difficult to find. Since
it has no notion of state, to ensure termination there must be a non-zero probability
that each iteration of b will produce a result that is accepted by c. This is precisely the

3.4. EXECUTION IN THE LOGIC OF PROBABILISTIC PROGRAMS 71

sufficient condition (3.30) for probabilistic termination (Section 3.3.2). Using this, the
following theorems fall out as special cases of probabilistic while:

` ∀ b, c. (3.38)

b ∈ indep fn ∧ (∃∗s. c(fst (b(s)))) ⇒ prob until b c ∈ indep fn

` ∀ b, c. (3.39)

b ∈ indep fn ∧ (∃∗s. c(fst (b(s)))) ⇒
prob until b c = bind b (λx. if c(x) then unit x else prob until b c)

` ∀ b, c. (3.40)

b ∈ indep fn ∧ (∃∗s. c(fst (b(s)))) ⇒ ∀∗s. c(fst (prob until b c s))

In addition, we apply the reduction theorem for probabilistic while loops (Theorem 43)
to calculate the result probabilities for probabilistic until loops.

Theorem 45 Result Probability for Probabilistic Until Loops

` ∀A, b, c. (3.41)

b ∈ indep fn ∧ (∃∗s. c(fst (b(s)))) ⇒
P {s | fst (prob until b c s) ∈ A} =(

P {s | fst (prob until b c s) ∈ A ∩ {x | c(x)}}
P {s | fst (prob until b c s) ∈ {x | c(x)}}

)
If we specialize these general theorems to our simple trichotomy example, then its

probability distribution is easily calculated:

` ∀ k. P {s | fst (trichotomy s) = k} = if k = (⊥,⊥) then 0 else 1
3

This intuitive result formally shows trichotomy to be a true sampling algorithm for the
Uniform(3) distribution: an impossible task without using probabilistic termination (as
we show in Section 4.3).

3.4 Execution in the Logic of Probabilistic Programs

3.4.1 Introduction to Execution in the Logic

The execution of programs within the logic is an essential component of many automatic
proof procedures, and can also be useful to check that a new program behaves correctly on
some simple examples. To finish off this chapter, we demonstrate how the formalization
of a pseudo-random number generator allows us to execute probabilistic algorithms in the
logic.

Execution within the logic takes place by making many passes of rewriting with the
definitions of logical constants. For example, by rewriting with the following definition of
list append

` ∀h, t, l. append [] l = l ∧ append (h :: t) l = h :: (append t l)

72 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

we can execute the ‘program’
append [1, 2] [3, 4, 5]

which results in the theorem

` append [1, 2] [3, 4, 5] = [1, 2, 3, 4, 5]

The ACL2 theorem prover (Kaufmann et al., 2000b) uses the underlying LISP inter-
preter to perform execution in the logic; this is efficient enough to simulate many cycles
of a microprocessor (Kaufmann et al., 2000a). Execution in HOL can be carried out by
using either the standard rewriting tools, or the computeLib tool of Barras (2000). This
latter is guaranteed to match the complexity of execution in ML, though there is a large
constant factor difference.18

3.4.2 Formalizing a Pseudo-random Bit Sequence

To execute probabilistic programs in the logic, we need a formal ‘sequence of random
bits’ to feed in. Although there exist logics—such as the probabilistic logic of Nilsson
(1986)—in which truly random objects can be formally defined, this is not supported
by higher-order logic. We therefore use a pseudo-random bit sequence for this purpose
instead, based on the linear congruence method of generating pseudo-random numbers
(Knuth, 1997):

Definition 46 A Pseudo-random Bit Sequence

` pseudo A B N = siter even (λn. An+B mod (2N + 1))

The following two properties are all we need for executing probabilistic programs in
the logic, and these follow directly from the definition of siter (in Section 2.3.1).

` ∀A,B,N, n. shd (pseudo A B N n) = even n (3.42)

` ∀A,B,N, n. (3.43)

stl (pseudo A B N n) = pseudo A B N (An+B mod (2N + 1))

Our method is this: after selecting appropriate parameters A,B,N and a starting
seed i, we pass the sequence pseudo A B N n as the argument of a probabilistic program.
During execution, as random bits are required, there will appear terms of the form

shd (pseudo A B N n)

stl (pseudo A B N n)

These are immediately reduced using theorems (3.42) and (3.43). In this way the purely
functional pseudo closely simulates an imperative pseudo-random number generator by
carrying around its current state.19

18Barras calculates the constant factor to be about 1000 for his merge-sort example.
19This avoids the efficiency disaster in which to calculate the 100th iteration of the state we must

calculate the 99th, the 98th, etc., all the way back to the beginning.

3.4. EXECUTION OF PROBABILISTIC PROGRAMS 73

Example: Choosing the parameters

A = 103 B = 95 N = 79

and initial seed 0, we can execute trichotomy in the logic (defined in Section 3.3.4). This
is performed by using computeLib to rewrite with: the definitions of bind, unit and sdest;
the reduction theorems (3.42) and (3.43) above; various boolean simplifications; and the
following theorem for trichotomy:

` ∀ s. (3.44)

trichotomy s =

bind sdest

(λx. bind sdest (λ y. if x ∨ y then unit (x, y) else trichotomy)) s

By threading the pseudo-random sequence through many iterations of trichotomy, we
can produce the following chain of theorems:

` trichotomy (pseudo 103 95 75 0) = ((>,⊥), pseudo 103 95 75 65)
` trichotomy (pseudo 103 95 75 65) = ((⊥,>), pseudo 103 95 75 33)
` trichotomy (pseudo 103 95 75 33) = ((>,⊥), pseudo 103 95 75 94)
` trichotomy (pseudo 103 95 75 94) = ((>,⊥), pseudo 103 95 75 107)
` trichotomy (pseudo 103 95 75 107) = ((>,>), pseudo 103 95 75 2)
` trichotomy (pseudo 103 95 75 2) = ((>,>), pseudo 103 95 75 143)
` trichotomy (pseudo 103 95 75 143) = ((⊥,>), pseudo 103 95 75 55)
` trichotomy (pseudo 103 95 75 55) = ((⊥,>), pseudo 103 95 75 96)
` trichotomy (pseudo 103 95 75 96) = ((>,⊥), pseudo 103 95 75 34)
` trichotomy (pseudo 103 95 75 34) = ((>,>), pseudo 103 95 75 32)

etc. . .

2

We emphasize that linear congruential pseudo-random bit sequences are merely a
convenient way to generate superficially unpredictable bits, and are of course completely
deterministic. We might equally well test our probabilistic programs on the sequence
where every element is >, but this is not even superficially unpredictable. The point is
well made by von Neumann (1963):

Any one who considers arithmetical methods of producing random digits is, of
course, in a state of sin. For, as has been pointed out several times, there is no such
thing as a random number—there are only methods to produce random numbers,
and a strict arithmetical procedure is of course not such a method.

3.4.3 Execution as an Automatic Proof Procedure

If a deterministic program terminates, the result of the computation will be unique.
However, for non-deterministic programs—including probabilistic programs—there may
be many possible results depending on how the internal choices were resolved during the
computation. Therefore, to get useful results from execution in the logic, we must make
use of theorems about probabilistic programs that hold for every input sequence of bits.

74 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

By inspection of the theorems we have proved about probabilistic programs, it looks
to be true that programs using probabilistic termination generally have properties that
are quantified by ∀∗ instead of the stronger ∀.20 Here we see a practical effect of this: ∀-
quantified theorems apply to every input sequence (and so include our pseudo-random bit
sequence), but ∀∗-quantified theorems apply only to an unspecified set of sequences having
probability 1 (and so might not include our pseudo-random bit sequence). Therefore, we
are more likely to be able to deduce useful properties by executing programs in the logic
that do not use probabilistic termination.

For example, consider the following properties of a hypothetical probabilistic program:

∀n. ∀∗s. φ(n) ⇒ ψ(fst (prob program n s)) (3.45)

∀n. ∀ s. φ(n) ⇒ ψ(fst (prob program n s)) (3.46)

Property (3.45) would typically be all that we can prove if prob program employs proba-
bilistic termination, whereas the stronger property (3.46) might be provable if prob program
does not. Suppose we execute

prob program 10 pseudorandom

in the logic for some pseudo-random bit sequence pseudorandom, and in doing so discover
that

¬ψ(fst (prob program 10 pseudorandom))

With the stronger property (3.46) we can apply the law of contrapositives to deduce the
potentially useful result ¬φ(10), but this does not follow from the weaker property (3.45).

3.5 Concluding Remarks

The main result of this chapter is the development of an infrastructure for the practical
verification of probabilistic algorithms. This builds upon our formalization of probability
theory in Chapter 2, and will be applied in Chapters 4 and 5 to verify some example
probabilistic programs.

The semantics of probabilistic programs was first tackled by Kozen (1979), and devel-
oped by Jones (1990), He et al. (1997) and Morgan et al. (1995). This line of research
extends the predicate transformer idea of Dijkstra (1976) in which programs are regarded
as functions: they take a set of desired end results to the set of initial states from which
the program is guaranteed to produce one of these final states. With the addition of
probabilistic choice, the ‘sets of states’ must be generalized to functions from states to
the real interval [0, 1]. Jones applies the semantics to proving completeness of a Hoare
logic defined on a little while language equipped with probabilistic choice. It would be
interesting to embed this language in higher-order logic, and use our probability theory
to derive the same proof rules.

The probabilistic dynamic logic of Feldman and Harel (1984) is another extension
of Kozen’s initial work. The essential concepts of their system are the same as ours;
programs operate on a sequence of random variables; the analysis is measure-theoretic,

20This is observed to be the case in Section 4.3, where we compare implementations of Uniform(n)
sampling algorithms with and without probabilistic termination.

3.5. CONCLUDING REMARKS 75

and cylinders (our prefix sets) play an important role. One difference from our model is
that random variables can come from arbitrary probability distributions, but we provide
only the Bernoulli(1

2
) distribution as primitive (others may derived by using sampling

functions). In addition, they support reasoning about partial functions, but lack our
probabilistic quantifiers. Their resulting logic is a two-level extension of first-order logic,
with an axiomatized proof system. Our logic is simpler, by virtue of being a definitional
extension of higher-order logic.

There are many application domains in which it is natural to use continuous distri-
butions, and the approach laid out in this chapter adapts very well to algorithms that
access the continuous distributions using infinite precision real arithmetic. In this way of
looking at things, our infinite sequence of samples from Bernoulli(1

2
) is a single sample

from Uniform[0, 1]. Knuth and Yao (1976) show how to use a sequence of random bits to
efficiently generate bits of many more continuous distributions, and it would be interesting
to verify some simple algorithms along these lines.

Finally, we examine our underlying assumption that probabilistic programs have access
to a source of Bernoulli(1

2
) random bits. In terms of whether this is sufficient to model all

probabilistic programs, Gill (1977) showed that the computational power of a language
with probabilistic choice ∨p is the same as a language with ∨ 1

2
, so long as p is computable.

In the other direction, do infinite sequences of IID Bernoulli(1
2
) random variables exist in

the real world? Leaving aside the more difficult independence issues, von Neumann (1963)
gives a neat trick to obtain a precisely fair coin (sequence of IID Bernoulli(1

2
) random

variables) from any biased coin (sequence of IID Bernoulli(p) random variables21). Flip
the biased coin twice, and if the result is HT then output H, if the result is TH then
output T , and if the result is HH or TT then output nothing. Independent of how the
coin is biased, we know that the probability of HT must be equal to the probability of
TH, so if we repeat this procedure long enough then an infinite sequence of fair coin flips
will emerge.

21We must have 0 < p < 1 for this to work.

76 CHAPTER 3. VERIFYING PROBABILISTIC ALGORITHMS

Chapter 4

Example Probabilistic Programs

To illustrate our framework for verifying probabilistic algorithms in a theorem prover, we
prove the correctness of several example programs. Most of these are sampling algorithms
for various probability distributions, which support the development of more sophisticated
probabilistic programs. We also define the symmetric simple random walk, since it repre-
sents a complicated case of probabilistic termination, and verify the ‘optimal dice’ from a
paper by Knuth and Yao (1976).

4.1 Introduction

In Chapter 2 we formalized probability theory in higher-order logic, to give meaning to
specifications of probabilistic programs. In Chapter 3 we introduced a convenient notation
in which to express implementations of probabilistic programs in higher-order logic. In
addition, we defined some program constructs (such as prob while) and properties (such
as indep fn) and proved a body of theorems about them. On the strength of all this, we
claimed to have developed a framework in which it was practical to verify probabilistic
programs in a theorem prover. This chapter constitutes evidence substantiating our claim.
We implement in higher-order logic several useful probabilistic programs, and formally
verify their correctness.

The probabilistic algorithms that we initially choose to verify are used to generate
samples from different probability distributions, given a source of random bits. These
sampling algorithms are low-level probabilistic programs, useful in many programming
contexts where a certain kind of probabilistic behaviour is required. For example, some
hardware simulation software may need a particular distribution of inputs to test a circuit,
but only has access to random bits from a pseudo-random number generator or from the
operating system.1 Typically, sampling algorithms can be implemented as small proba-
bilistic programs, but involve some interesting reasoning about probability to prove their
correctness. They thus represent ideal examples to test the verification framework we have
laid in place. In addition, once we have verified a suite of sampling algorithms for differ-
ent distributions, we can use them as subroutines in higher-level textbook probabilistic
algorithms. Chapter 5 contains a case study where we do just this: using a Uniform(n)

1The latest Verilog standard (IEEE Standards Department, 2001) includes some continuous distribu-
tion sampling algorithms for just such a purpose. To further motivate our own work, in one draft of the
standard the χ2 distribution sampling algorithm was found to be wrong!

77

78 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

sampling algorithm in an implementation of the Miller-Rabin probabilistic primality test.
The proof of correctness of the Uniform(n) sampling algorithm is then instrumental in
the proof of correctness of the Miller-Rabin primality test.

Despite being essential subroutines in the implementation of probabilistic algorithms,
sampling algorithms often lie beneath the considerations of textbook presentations. The
following excerpt from Randomized Algorithms (Motwani and Raghavan, 1995, page 6)
assumes a typical position:

We define a randomized algorithm as an algorithm that is allowed access to
a source of independent, unbiased, random bits; it is then permitted to use these
random bits to influence its computation. . . . While we will usually not worry about
the conversion of random bits to the required distribution, the reader should keep
in mind that random bits are a resource whose use involves a non-trivial cost.
Moreover, there is sometimes a non-trivial computational overhead associated with
sampling from a seemingly well-behaved distribution. For example, consider the
problem of using a source of unbiased bits to sample uniformly from a set S whose
cardinality is not a power of 2.

The formal consideration of this type of problem is the main focus of the present chapter.
The first sampling algorithm we verify, in Section 4.2, generates samples from the

Binomial(n, 1
2
) distribution. This does not use probabilistic termination, and so we are

able to demonstrate the application of our formal verification framework in the absence
of this complicating factor.

In Section 4.3 we verify two algorithms to sample from the Uniform(n) distribution.
The first uses probabilistic termination and returns each of n different results with prob-
ability exactly 1/n. The second has the property of guaranteed termination, but is only
an approximate algorithm. An additional natural number parameter t must be passed in,
and the probability pi of the result 0 ≤ i ≤ n− 1 satisfies

|pi − 1/n| ≤ 2−t

Implementing essentially the same algorithm twice—with and without probabilistic termination—
allows us to compare the effect of using probabilistic termination on the formal properties
of the algorithm.

In Section 4.4 we give a sampling algorithm for the Geometric(1
2
) distribution. This

example stimulated the development of the probabilistic while loop, and demonstrates
that our method is expressive enough to model discrete distributions over an infinite set.
For each natural number n, the probability that the Geometric(1

2
) sampling algorithm

returns n is (1
2
)n+1.

The last sampling algorithm that we verify, in Section 4.5, samples from the Bernoulli(p)
distribution. Since p can be any real number between 0 and 1, both the (probabilistic)
termination and correctness of this program represents a challenge.

In addition to these sampling algorithms, we verify two more probabilistic algorithms
that illustrate different aspects of our formal framework. Firstly, in Section 4.6, we verify
two algorithms given by Knuth and Yao (1976) for generating dice rolls and sums of two
dice rolls. These algorithms are optimal in the number of random bits that they are
expected to consume, but their correctness is not a simple matter of inspection. The
algorithms are interesting because they are expressed as finite state machines with proba-
bilistic transitions. Properties of such machines are routinely established by probabilistic

4.2. THE BINOMIAL(N, 1
2
) DISTRIBUTION 79

model checkers (such as Prism2), and showing how the verification proceeds in our frame-
work sheds light on the connection between the two different methods.

Finally, in Section 4.7, we define a variant of the symmetric simple random walk.
Starting at level n, at each step the random walk either moves up a level or down a level
with probability 1

2
each. If it ever hits level 0, then the random walk finishes and returns

the numbers of steps taken. This probabilistic program is interesting because the proof
that it terminates with probability 1 is not at all obvious.

4.2 The Binomial(n, 1
2) Distribution

The first sampling algorithm we will present samples from the Binomial(n, 1
2
) distribution,

where a Binomial(n, p) random variable is the sum of n independent Bernoulli(p) random
variables (DeGroot, 1989, page 100). We can thus define a simple sampling algorithm for
the Binomial(n, 1

2
) distribution by counting the number of >’s in the first n bits of our

sequence.

Definition 47 The Binomial(n, 1
2
) Sampling Algorithm

` prob binomial 0 = unit 0 ∧ (4.1)

∀n.
prob binomial (suc n) =

bind (prob binomial n)

(λm. bind sdest (λ b. unit (if b then suc m else m)))

By induction on n, it is easy to show that this sampling algorithm satisfies strong
function independence:

` ∀n. prob binomial n ∈ indep fn (4.2)

However, due to an interesting aspect of our definition of prob binomial, it is not quite
so easy to show that it has the correct probability distribution. If we had phrased the
definition as

. . . prob binomial (suc n) = bind (sdest (λ b. bind (prob binomial n) . . .

so that we extract an element from the sequence and then make the recursive call (instead
of the other way around), then the probability distribution theorem follows by induction
on n. Therefore we proceed using the following bind commutativity theorem to show that
the two definitions result in events of the same probability:

` ∀ f, g, h, A. (4.3)

f ∈ indep fn ∧ g ∈ indep fn ∧ (∀x, y. h x y ∈ indep fn) ⇒
P(preimage (fst ◦ bind f (λx. bind g (λ y. h x y))) A) =

P(preimage (fst ◦ bind g (λ y. bind f (λx. h x y))) A)

2http://www.cs.bham.ac.uk/~dxp/prism/

80 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

This is proved using the associativity of bind3 and theorem (3.20) relating the probability
of two bind events (Section 3.2.3).

Finally, we may deduce that prob binomial has the expected distribution:

` ∀n, r. P {s | fst (prob binomial n s) = r} =

(
n

r

)(
1
2

)n
(4.5)

Incidentally, although the Binomial(n, 1
2
) example is particularly easy to sample with

a source of random bits, it is not without intrinsic interest. The central limit theorem
(DeGroot, 1989, page 275) implies that for large n, the sampling algorithm

bind (prob binomial n)

(
λm. unit

(
2m− n√

n

))
is a good approximation to the normal distribution with mean 0 and standard deviation 1:
the most important distribution in statistics.

4.3 The Uniform(n) Distribution

In this section we are interested in sampling from the Uniform(n) distribution, which
assigns equal probability to each element in the set {0, . . . , n− 1}. Supposing n− 1 has
k bits, we approach the problem with an algorithm that returns the number represented
by the first k random bits.

Definition 48 A Sampling Algorithm for Uniform(2k)

` ∀n. (4.6)

prob unif n =

if n = 0 then unit 0 else

bind (prob unif (n div 2))

(λm. bind sdest (λ b. unit (if b then 2m+ 1 else 2m)))

Since prob unif makes no use of probabilistic termination, the following properties may
be proved by (complete) induction on its argument.

` ∀n. prob unif n ∈ indep fn (4.7)

` ∀n, k. (4.8)

(n = 0 ∧ k = 0) ∨ 2k−1 ≤ n < 2k ⇒
∀m. P {s | fst (prob unif n s) = m} = if m < 2k then 2−k else 0

This says that prob unif n samples from a Uniform(m) distribution, but that m can be up
to twice as large as n. Before proceeding to the correct sampling algorithm for Uniform(n),

3This is one of the laws that must be satisfied by all monads:

` ∀ f, g, h. bind f (λ x. bind (g(x)) h) = bind (bind f g) h (4.4)

4.3. THE UNIFORM(N) DISTRIBUTION 81

n

P(n)

Figure 4.1: The Distribution Resulting from broken prob uniform.

it is instructive to consider the following broken version:

broken prob uniform n =

bind (prob unif (n− 1)) (λm. unit (if n ≤ m then m− n else m))

This produces the distribution as shown in Figure 4.1, whereas the ideal distribution is
completely flat. The numbers close to zero have twice the probability of numbers close
to n− 1, because two results of prob unif n map to the smaller numbers, but only one to
the larger numbers. Now we give the correct version.

Definition 49 A Sampling Algorithm for the Uniform(n) Distribution

` ∀n. (4.9)

prob uniform (suc n) = prob until (prob unif n) (λx. x < suc n)

This prob uniform function uses a probabilistic until loop to repeatedly evaluate prob unif,
stopping when prob unif returns a number in the correct range. It is deliberately left un-
defined on an argument of zero, since the distribution Uniform(0) is an ill-formed concept.
Showing termination is easy, since the probability that prob unif returns 0 is 2−k for some
k, and so there is a non-zero probability that the loop will terminate on each iteration.
We may therefore apply the general prob until theorems of Section 3.3.4 to deduce the
following properties of prob uniform:

` ∀n. prob uniform (suc n) ∈ indep fn (4.10)

` ∀n. ∀∗s. fst (prob uniform (suc n) s) < suc n (4.11)

` ∀n,m. (4.12)

m < n ⇒ P {s | fst (prob uniform n s) = m} = 1/n

We have proved that prob uniform is a correct sampling algorithm for Uniform(n). Its
use of probabilistic termination is necessary, since an algorithm that is guaranteed to
terminate within N steps can only access N random bits. Therefore if a particular result
is produced in q different configurations of these N bits, then it will have probability q/2N .
Since 1/n can be written as q/2N only when n is a power of 2, a sampling algorithm for
Uniform(n) that is guaranteed to terminate can only exist when n is a power of 2.

However, the downside of using probabilistic termination is that the number of ran-
dom bits that will be required cannot be bounded in advance. Since random bits are

82 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

n

P(n)

Figure 4.2: The Distribution Resulting from prob uniform cut.

not a free resource, this may introduce unacceptable overhead into a calculation. Conse-
quently, most random number libraries in programming languages do not generate com-
pletely uniform random numbers (see Knuth (1997)), but instead try to reduce any bias
to an acceptable level.4 For these reasons, we also give a sampling algorithm for an
‘approximately-Uniform(n)’ distribution that is guaranteed to terminate.

Definition 50 An Approximately-Uniform(n) Sampling Algorithm

` ∀ t, n. (4.13)

prob uniform cut 0 (suc n) = unit 0 ∧
prob uniform cut (suc t) (suc n) =

bind (prob unif n)

(λm. if n ≤ m then prob uniform cut t (suc n) else unit m)

This prob uniform cut function takes an additional parameter t, and evaluates prob unif
at most t times to get a number in the correct range. If this never happens, then it
returns 0. It therefore results in an approximately-uniform distribution that slightly
favours 0, depicted in Figure 4.2.

Noting that each of the t independent calls to prob unif gives a better than 1
2

probability
of returning a number in the correct range, it is possible to prove the following theorems
about the behaviour of prob uniform cut:

` ∀ t, n. prob uniform cut t (suc n) ∈ indep fn (4.14)

` ∀ t, n, s. fst (prob uniform cut t (suc n) s) < suc n (4.15)

` ∀ t, n,m. (4.16)

m < n ⇒ |P {s | fst (prob uniform cut n s) = m} − 1/n| ≤ 2−t

It is interesting to compare the two sets of theorems that we can prove about prob uniform
and prob uniform cut. Both satisfy strong function independence, a basic result of proba-
bilistic programs that allows them to be composed in a tractable way. As we discussed, the
version with probabilistic termination can yield precisely correct probabilities, whereas
the version without can only get arbitrarily close. Theorems (4.11) and (4.15) show the

4When the bias is significantly less than the probability of a machine error, this is certainly acceptable
for all practical purposes.

4.4. THE GEOMETRIC(1
2
) DISTRIBUTION 83

ranges of the two algorithms, but where the ∀∗ quantifier in the theorem for prob uniform
says that the range being correct is an event of probability 1, the corresponding theorem
for prob uniform cut is much stronger: every input sequence gives a result in the correct
range.

The conclusion is that if we can implement an algorithm satisfying a specification
without using probabilistic termination, then we can expect it to satisfy stronger proper-
ties. In Chapter 5 we exploit this logical consequence of probabilistic termination, slightly
tweaking the usual textbook Miller-Rabin algorithm so that it satisfies the same speci-
fication, but calls prob uniform cut instead of prob uniform. Our implementation is then
guaranteed to terminate, requires a bounded number of random bits, and satisfies strong
versions of some key properties.

4.4 The Geometric(1
2) Distribution

In any reasonable model of computation with access to a sequence of random bits, only a
finite number of bits from the sequence can be read in finite time. Thus in no reasonable
model of computation will we be able to calculate the function: return the index of the
last > in the sequence, or 0 if there is no last >. Therefore if a distribution has non-
zero probability on an infinite number of points, it cannot be modelled without using
probabilistic termination. Such is the case with the Geometric(1

2
) distribution, where a

Geometric(p) random variable is defined to be the index of the first success in an infinite
sequence of Bernoulli(p) trials (DeGroot, 1989, page 260). In our model, the Geometric(1

2
)

distribution may be sampled by extracting random bits from the sequence, stopping as
soon as the first ⊥ is encountered, and returning the number of >’s extracted.

Definition 51 A Sampling Algorithm for the Geometric(1
2
) Distribution

` ∀ b, n. (4.17)

prob geometric iter (b, n) = bind sdest (λ b′. unit (b′, suc n))

` prob geometric = (4.18)

bind (prob while fst prob geometric iter (>, 0)) (λ (b, n). unit (n− 1))

Here the state is a pair, the first component containing the last random bit, and the
second the number of bits seen so far. This is initialized to (>, 0) and updated by the
probabilistic while loop until the first component becomes ⊥, at which point the result is
the second component (subtracting one because we do not count the final ⊥).

Termination again follows by using the sufficient condition (3.30) established in Sec-
tion 3.3.2, and so we may deduce strong function independence:

` prob geometric ∈ indep fn (4.19)

An application of the reduction theorem for while loops (Theorem 43 in Section 3.3.3)
allows us to show that prob geometric samples from the correct distribution:

` ∀n. P {s | fst (prob geometric s) = n} = (1
2
)n+1 (4.20)

In contrast with the theorems we proved about prob uniform, we do not need a theorem
about the range of prob geometric, since the correct range is the entirety of N.

84 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

4.5 The Bernoulli(p) Distribution

The final distribution that we sample from is the Bernoulli(p) distribution. This dis-
tribution is over the boolean values {>,⊥}, and models a test where > is picked with
probability p and ⊥ with probability 1 − p. Our sequence of random bits each come
from a Bernoulli(1

2
) distribution, and the present goal is to use these to sample from the

Bernoulli(p) distribution, where p is any real number between 0 and 1.5

The sampling algorithm we use is based on a simple intuition. Suppose the binary
expansion of p is 0.p0p1p2 · · ·, and consider the bits of the random sequence s as forming
a binary expansion 0.s0s1s2 · · ·: in this way s can also be regarded as a real number
between 0 and 1. Since the ‘number’ s is uniformly distributed between 0 and 1, the
probability that s is less than p is p. Therefore, an algorithm that returns the result >
if s is less than p, and ⊥ otherwise, will be sampling from the Bernoulli(p) distribution.
This question can be easily decided by looking at the binary expansions, and the matter
is further simplified since we can ignore awkward cases (such as s = p) that occur with
probability 0.

Definition 52 A Sampling Algorithm for the Bernoulli(p) Distribution

` ∀ p.
prob bernoulli iter p =

bind sdest

(λ b.

unit

(if p < 1
2

then if b then inl (2p) else inr ⊥
else if b then inr > else inl (2p− 1)))

` ∀ p.
prob bernoulli p =

bind (prob while is inr (prob bernoulli iter ◦ outl) (inl p)) (unit ◦ outr)

So that the sampling algorithm implementation fits neatly into a probabilistic while
loop, it makes heavy use of the HOL sum type α+β, having constructors inl, inr, destruc-
tors outl, outr and predicates is inl, is inr. However, the intent of the probabilistic while
loop is simply to evaluate s ≤ p by iteration on the bits of s:

• if shd s = ⊥ and 1
2
≤ p, then return >;

• if shd s = > and p ≤ 1
2
, then return ⊥;

• if shd s = ⊥ and p ≤ 1
2
, then repeat with s := stl s and p := 2p;

• if shd s = > and 1
2
≤ p, then repeat with s := stl s and p := 2p− 1.

5The problem for reals is harder than for rationals, since if p = m/n then the following sampling
algorithm trivially works:

bind (prob uniform n) (λ k. unit (k < m))

4.6. OPTIMAL DICE 85

This method of evaluation has two important properties: firstly, it is obviously correct
since the scaling operations on p just have the effect of removing its leading bit; secondly,
probabilistic termination holds, since every iteration has a probability 1

2
of terminating the

loop. Indeed, Hart’s 0-1 law of termination (Theorem 41) provides a convenient method
of showing probabilistic termination:

` prob while terminates isl (prob bernoulli iter ◦ outl) (4.21)

From this follows strong function independence

` ∀ p. prob bernoulli p ∈ indep fn (4.22)

and we can then formulate an alternative definition of prob bernoulli:

` ∀ p. (4.23)

prob bernoulli p =

bind sdest

(λ b.

if b then (if p ≤ 1
2

then unit ⊥ else prob bernoulli (2p− 1))

else (if p ≤ 1
2

then prob bernoulli (2p) else unit >))

This definition of prob bernoulli is more readable, closer to the intuitive version, and easier
to use in proofs. We use this to prove the correctness theorem:

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | prob bernoulli p s} = p (4.24)

The proof of this is quite simple, once the right idea is found. The idea is to show that
the probability gets within (1

2
)n of p, for an arbitrary natural number n. This occurs after

n iterations, as can be shown by induction.
It may be slightly counter-intuitive that for any real number 0 ≤ p ≤ 1 we can generate

an event of probability p, using a probabilistic program that with probability 1 will only
look at a finite number of random bits. However, it might be helpful to look at this in the
following way: for any two real numbers 0 ≤ p, q ≤ 1, the probability that prob bernoulli p
and prob bernoulli q follow the same execution path is |p− q|. Therefore, for p and q that
differ only after position n in their binary expansions, prob bernoulli p and prob bernoulli q
will differ with probability less (1

2
)n.

Note that now we have samples from the Bernoulli(p) distribution, it would be simple
to define other standard distributions parameterized by real p. For example, just as
we based our Binomial(n, 1

2
) and Geometric(1

2
) sampling algorithms on samples from

a Bernoulli(1
2
) distribution, we could similarly define Binomial(n, p) and Geometric(p)

sampling algorithms based on Bernoulli(p) samples.

4.6 Optimal Dice

A paper of Knuth and Yao (1976) shows that many probability distributions can be
sampled using only a sequence of random bits. One of these is a dice program that
requires on average 32

3
coin flips to produce a dice roll, and this is proved to be optimal.6

The procedure is depicted in Figure 4.3.

6This optimality is very strong: if pn is the probability that the program requires more than n rolls
to produce a result, then each pn is minimal over all dice programs.

86 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

1

2

3

4

5

6

0

Figure 4.3: An Optimal Way to Sample Dice Rolls Using Coin Flips.

The idea is that one starts at the root node and repeatedly tosses a coin, taking a upper
branch whenever the coin produces H, and a lower branch whenever the coin produces
T . When a box is reached the procedure is finished, the result being the contents of
the box. This way of representing probabilistic programs is called a DDG-tree,7 and any
probabilistic program using a source of random bits can be written as a (possibly infinite)
DDG-tree.

We can model finite DDG-trees as HOL probabilistic programs, and then verify that
they produce the correct probability distribution. The procedure is illustrated on the dice
DDG-tree. Starting at the root node (node 0 in Figure 4.3), we make a coin flip to decide
whether to move to node 1 or node 2. Suppose the coin produces a H and so we move to
node 1. Since there is an arrow that returns to node 1 from later in the tree, we declare
this loop with a prob repeat at this point. This means that the nodes after this point
must return an option type, and the prob repeat construct will repeatedly try the subtree
until a some x is returned (it strips off the some using the to create its result). Node 1
also contains a coin flip, suppose that another H is produced so that we move to node 3.
There is another coin flip here: if it is a H then we return a none to force another try
from node 1; and if it is a T then we return some 1. This is the complete model we use,
except for the following piece of notational convenience. If we have reached node 4, then
we know we will never go back to node 1, and so we insert a mmap some so that whatever
we return will automatically be wrapped with a some before it is passed further up the
tree.8 We now give the precise definitions of these constructs and the HOL version of the

7DDG stands for Discrete Distribution Generating.
8It may be helpful to think of prob repeat as ‘opening a bracket’ that must be closed on every succeeding

4.6. OPTIMAL DICE 87

dice DDG-tree.

Definition 53 Constructs for Modelling DDG-Trees

` ∀ a, b. coin flip a b = bind sdest (λx. if x then a else b) (4.25)

` ∀ a. prob repeat a = mmap the (prob until a is some) (4.26)

` ∀ f,m. mmap f m = bind m (unit ◦ f) (4.27)

Definition 54 An Optimal dice Program

` dice = (4.28)

coin flip

(prob repeat

(coin flip

(coin flip (unit none) (unit (some 1)))

(mmap some (coin flip (unit 2) (unit 3))))

(coin flip

(mmap some (coin flip (unit 4) (unit 5)))

(coin flip (unit (some 6)) (unit none))))

Using the techniques we have introduced for verifying probabilistic programs, it is
possible to prove that the dice program returns the right probability distribution:

` ∀n. (4.29)

P {s | fst (dice s) = n} = if 1 ≤ n ∧ n ≤ 6 then 1
6

else 0

We now turn our attention to the problem of generating the sum of two dice. The
probabilistic program

` two dice = bind dice (λ a. bind dice (λ b. unit (a+ b))) (4.30)

will do this, and we can even prove that it returns the right distribution:

` ∀n. (4.31)

P {s | fst (two dice s) = n} =

if n = 2 ∨ n = 12 then 1
36

else if n = 3 ∨ n = 11 then 2
36

else if n = 4 ∨ n = 10 then 3
36

else if n = 5 ∨ n = 9 then 4
36

else if n = 6 ∨ n = 8 then 5
36

else if n = 7 then 6
36

else 0

Since dice requires on average 32
3

coin flips, it follows that two dice will require 71
3
. It

might also be thought that since dice was the optimal way to generate a single dice roll,
two dice would be the best way to generate the sum of two dice. However, Knuth and Yao
(1976) show that this is not so, and in fact the optimal DDG-tree depicted in Figure 4.4
requires only 4 7

18
coin flips on the average.

branch, either by returning an option type at a leaf node or by inserting an mmap some inside a branch.

88 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

12

12

9

10

12

10

8

4

6

4

23

4

3 2

2

35

5

5

6

6

8

8

7

7

7

9

9

11

11

11

10

Figure 4.4: An Optimal Way to Sample the Sum of Two Dice Rolls.

4.7. THE SYMMETRIC SIMPLE RANDOM WALK 89

Using our constructs for modelling DDG-trees, we can formalize the optimal DDG-tree
for generating the sum of two dice, and even prove that it yields the same probability
distribution as the straightforward version two dice we gave above:

` ∀n. (4.32)

P {s | fst (optimal two dice s) = n} = P {s | fst (two dice s) = n}

The HOL version of this theory (including the full 77-line definition of optimal two dice)
can be found in Appendix C.3.

4.7 The Symmetric Simple Random Walk

For all of the probabilistic while loops we have seen so far, it was fairly easy to prove that
they terminated with probability 1. All followed from some general scheme of probabilistic
termination, such as Hart’s 0-1 law. The purpose of this section is to show an example of
a probabilistic program with a more difficult proof of probabilistic termination.

The symmetric simple random walk is a probabilistic process with a compelling in-
tuitive interpretation (for a standard probability perspective, see Stirzaker (1994, page
145)). A drunk starts at point n (the pub) and is trying to get to point 0 (home). Un-
fortunately, every step he makes from point i is equally likely to take him to point i + 1
as it is to take him to point i− 1. The following program simulates the drunk’s passage
home; returning the number of steps that were taken.

Definition 55 A Simulation of the Symmetric Simple Random Walk

` ∀n. (4.33)

random lurch n = bind sdest (λ b. unit (if b then n+ 1 else n− 1))

` ∀ f, b, a, k. (4.34)

prob cost f b (a, k) = bind (b(a)) (λ a′. unit (a′, f(k)))

` ∀n, k. (4.35)

random walk n k =

bind (prob while (λ (n,). 0 < n) (prob cost suc random lurch) (n, k))

(λ (, k). unit k)

Why should the random walk always terminate? Firstly, let πi,j the probability that
starting at point i, the drunk will eventually reach point j. We first formalize the two
lemmas πp+i,p = πi,0 and πi,0 = πi

1,0. Therefore if the drunk is guaranteed to reach home
from a pub at point 1, he will be guaranteed to reach home from a pub at any point. By
examining a single iteration of the random walk we have

π1,0 = 1
2
π2,0 + 1

2
= 1

2
π2

1,0 + 1
2

which rewrites to
(π1,0 − 1)2 = 0

90 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

This completes the proof of probabilistic termination, and as usual strong independence
immediately follows.

` ∀n, k. random walk n k ∈ indep fn (4.36)

At this point, we may formulate the definition of random walk in a more natural way:

` ∀n, k. (4.37)

random walk n k =

if n = 0 then unit k else

coin flip (random walk (n+1) (k+1)) (random walk (n−1) (k+1))

We have now finished the hard work of defining the random walk as a probabilistically
terminating program. To demonstrate that once defined it is just as easy to reason about
as any of our probabilistic programs, we prove a basic property of the random walk.

` ∀n, k. ∀∗ s. even (fst (random walk n k s)) = even (n+ k) (4.38)

Therefore for a pub at point 1001, the drunk is guaranteed to get home eventually, but
he must take an odd number of steps to do so!

We can extract this probabilistic program to ML, and repeatedly simulate it using
high-quality random bits from the operating system.9 Here is a typical sequence of results
from random walks starting at level 1:

57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, . . .

As can be seen, the number of steps that are required for the random walk to hit zero
is usually less than 100. But sometimes, the number can be much larger. Continuing
the above sequence of simulations, the 34th simulation sets a new record of 2645 steps,
and the next record-breakers are the 135th simulation with 603787 steps and the 664th
simulation with 1605511 steps. Such large records early on are understandable, since the
theoretical expected number of steps for the random walk is actually infinite!10

4.8 Concluding Remarks

In this chapter we have demonstrated the practical effectiveness of our framework for
verifying probabilistic programs in a theorem prover, set up in Chapters 2 and 3. For this

9See Section 5.4 for more details about such extractions.
10In case it is difficult to see how an algorithm could have infinite expected running time but terminate

with probability 1, consider an algorithm where the probability of termination after n steps is 6
π2n2 . The

probability of termination is then∑
n

6
π2n2

=
6
π2

∑
n

1
n2

=
6
π2
· π

2

6
= 1

and the expected running time is ∑
n

n
6

π2n2
=

6
π2

∑
n

1
n

=∞

4.8. CONCLUDING REMARKS 91

purpose we verified a collection of sampling algorithms upon which more sophisticated
probabilistic programs can be built (such as the Miller-Rabin primality test in Chapter 5),
and another two interesting examples of probabilistic programs.

Following our formalization, the correct probabilities for the optimal dice examples
have also been verified by the Prism probabilistic model checker (Kwiatkowska et al.,
2001). The optimal dice programs are naturally expressed as probabilistic finite state au-
tomata, and Prism automatically evaluates the final probabilities. It would be interesting
to link up a theorem prover and a probabilistic model checker; perhaps some analogue of
bounded model checking could be used to find bugs in probabilistic programs?

Finally, in Section 3.5 we quoted a result of Gill (1977) that “the computational power
of a language with probabilistic choice ∨p is the same as a language with ∨ 1

2
, so long as

p is computable.” From our verification of the Bernoulli(p) sampling algorithm, it may
appear that using a source of random bits we can simulate probabilistic choice ∨p for any
p. However, by inspecting the prob bernoulli algorithm, it is only possible to evaluate the
algorithm for a real p that supports the following operations: multiplying by 2; subtracting
by 1; comparing with 1

2
. Using these operations, we can compute each bit of p, and so

p must be a computable real. Additionally, for every computable p and non-computable
q the execution paths of prob bernoulli p and prob bernoulli q will differ with probability
|p − q|. Therefore—in line with the result of Gill—prob bernoulli allows us to simulate
probabilistic choice ∨p precisely when p is computable.

92 CHAPTER 4. EXAMPLE PROBABILISTIC PROGRAMS

Chapter 5

Verification of the Miller-Rabin
Primality Test

We formally verify a HOL implementation of the Miller-Rabin primality test, a well-
known and commercially used probabilistic algorithm. Our fundamental perspective allows
us to define a version with strong properties, which we can execute in the logic to prove
compositeness of numbers. Finally, we manually extract the HOL Miller-Rabin test to
Standard ML, and its performance is evaluated on a large number of candidate primes.1

5.1 Introduction

5.1.1 The Miller-Rabin Probabilistic Primality Test

In the 1970s a handful of probabilistic algorithms were introduced that demonstrated
two practical advantages over deterministic alternatives: simplicity of expression and
efficiency of execution. An algorithm of Berlekamp (1970) uses randomization to factor
polynomials; Solovay and Strassen (1977) introduced a probabilistic primality test based
on the Jacobi symbol; and Rabin (1976) presented two probabilistic algorithms: the first
finds the nearest neighbours of a set S ⊂ Rn, and the second uses a number theory result
of Miller (1975) to test numbers for primality.

This last algorithm has subsequently become known as the Miller-Rabin probabilistic
primality test, and is the subject of the present chapter. We implement a version of
the Miller-Rabin algorithm in HOL, and use our theory of probability to express its
probabilistic specification. A formalization of Miller’s result is required to show that the
algorithm satisfies its specification, and the verification is completed by using some of the
proof techniques for probabilistic programs we developed in Chapter 3.

In his 1976 paper, Rabin evaluated the algorithm by finding the largest prime less
than 2400 (it took less than a minute to return the result 2400 − 593), and reports that
“the algorithm was also used to find twin primes by far larger than any hitherto known
pair.” Today the Miller-Rabin algorithm is used for primality testing in computer algebra
systems such as Mathematica. It is also relevant to public key cryptography software,
since the RSA algorithm uses a modulus of the form n = pq where p and q are large
primes chosen at random. In practice p and q are found by randomly choosing large

1This chapter is a revision of Hurd (2001b).

93

94 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

numbers, and then checking them for primality using a convenient primality test such as
Miller-Rabin.2

5.1.2 The HOL Verification

The end result of this chapter is a HOL version of the Miller-Rabin probabilistic primality
test, satisfying the following specification.

Theorem 56 Correctness of the Miller-Rabin Primality Test

` ∀n, t, s. prime n ⇒ fst (miller rabin n t s) = > (5.1)

` ∀n, t. (5.2)

¬prime n ⇒ 1− 2−t ≤ P {s | fst (miller rabin n t s) = ⊥}

The miller rabin test takes two natural number parameters n and t (in addition to a
source s of random bits), where n is the number that we wish to test for primality and t
determines the amount of computation that the test is allowed to perform. If n is prime
then the test is guaranteed to return >; if n is composite then it will return ⊥ with
probability at least 1− 2−t and > with probability at most 2−t. Thus for a given value of
n if miller rabin n t s returns ⊥ then n is definitely composite, but if it returns > then all
we know is that n is probably prime.3 However, setting t = 50 we see that the probability
of the algorithm returning > for an n that is actually composite is ≤ 2−50 < 10−15.

The novelty of this verification lies in the fact that this is an algorithm with a proba-
bilistic specification used in commercial software. In addition, we present in Appendix D a
version of the verified algorithm that we have manually extracted to ML. This is not quite
identical to the version commonly found in algorithm textbooks, since they assume a gen-
erator for the Uniform(n) distribution, while our version works directly from a sequence of
random bits. Practically speaking, this makes the textbook version harder to implement
properly, because ‘genuine’ randomness from the operating system is usually presented to
the user as a sequence of random bits. To obtain numbers from a Uniform(n) distribution,
a suitable sampling algorithm must be implemented, and we saw in Section 4.3 that this
is a slightly delicate matter.4 In the version we present, a bound can be made on the
number of random bits that the algorithm will require.

Completing the proof of correctness requires a significant body of group theory and
computational number theory to be formalized in the theorem prover, and Section 5.2
shows how the classical results fit together in the verification. This formalization actually
constituted the bulk of the effort and provided the testing ground for a new automatic
proof procedure; we briefly report on this experience. Section 5.3 describes the somewhat
easier task of interfacing the number theory with the probability theory to produce the

2Surprisingly, the popular email encryption program PGP (and the Gnu version GPG) use the Fermat
test to check numbers for primality, although the Miller-Rabin test is stronger and involves no extra
computation.

3Quantifying that ‘probably’ is a hard problem: the probability that n is prime given that
fst (miller rabin n t s) returned > depends on the set S from which n was chosen and the distribu-
tion of primes in S.

4An inevitable consequence is the loss of guaranteed termination, replaced with probabilistic termi-
nation.

5.2. COMPUTATIONAL NUMBER THEORY 95

result, and we also give an immediate application in the form of a procedure for formally
proving that numbers are composite. Finally, we highlight the software engineering benefit
of this formal methods research by manually extracting our Miller-Rabin primality test
to the ML programming language. In Section 5.4 we examine the correctness issues in
extracting the algorithm to ML, and profile its performance.

5.2 Computational Number Theory

5.2.1 Definitions

Our HOL implementation of the Miller-Rabin algorithm is (almost) a functional trans-
lation of the version presented in Cormen, Leiserson, and Rivest (1990). To prepare, we
define functions to factor out powers of 2 and perform modular exponentiation. Here are
the correctness theorems for these functions:

` ∀n, r, s. (5.3)

0 < n ⇒ (factor twos n = (r, s) ⇐⇒ odd s ∧ 2rs = n)

` ∀n, a, b. 1 < n ⇒ modexp n a b = (ab mod n) (5.4)

Next we define a function witness a n that is completely deterministic, returning > if
the base a can be used to provide a quick proof that n is composite, and ⊥ otherwise.
We assume that a and n satisfy 0 < a < n. The witness function uses a helper function
witness tail which is defined using pattern-matching.

Definition 57 The Miller-Rabin Witness Function

` ∀n, a, r. (5.5)

witness tail n a 0 = a 6= 1 ∧
witness tail n a (suc r) =

let a′ ← a2 mod n

in if a′ = 1 then a 6= 1 ∧ a 6= n− 1 else witness tail n a′ r

` ∀n, a. (5.6)

witness n a =

let (r, s)← factor twos (n− 1) in witness tail n (modexp n a s) r

The witness function calls factor twos to find r, s such that s is odd and 2rs = n − 1,
then uses modexp and witness tail to calculate the sequence

(a20s mod n, a21s mod n, . . . , a2rs mod n)

This sequence provides two primality tests for n:

1. a2rs mod n = 1.

2. If a2js mod n = 1 for some 0 < j ≤ r, then either a2j−1s mod n = 1 or a2j−1s mod n =
n− 1.

96 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

If n is a prime then we wish to show that both these tests will always be true. Test 1 is
equivalent to aφ(n) mod n = 1 (since 2rs = n− 1 = φ(n) for n prime), and this is exactly
Fermat’s little theorem. For this reason this test for primality is called the Fermat test.
Test 2 is true since for every x, if 0 = (x2− 1) mod n = (x+ 1)(x− 1) mod n, then if n is
prime we must have that either (x+ 1) mod n = 0 or (x− 1) mod n = 0. We thus obtain
the following correctness theorem for witness:

` ∀n, a. 0 < a < n ∧ witness n a ⇒ ¬prime n (5.7)

5.2.2 Underlying Mathematics

A composite number n that passes a primality test for some base a is called a pseudoprime.
In the case of the Fermat test, there exist numbers n that are pseudoprimes for all bases
a coprime to n. These numbers are called Carmichael numbers, and the two smallest
examples are 561 and 1729.5 Testing Carmichael numbers for primality using the Fermat
test is just as hard as factorizing them, since the only bases that fail the test are multiples
of divisors. Miller’s insight was that by also performing Test 2, the number of bases that
are witnesses for any composite n will be at least (n−1)/2, as formalized in the following
theorem.6

Theorem 58 Cardinality of Miller-Rabin Witnesses

` ∀n. (5.8)

1 < n ∧ odd n ∧ ¬(prime n) ⇒
n− 1 ≤ 2 |{a : 0 < a < n ∧ witness n a}|

Therefore there are no Carmichael numbers for the Miller-Rabin test, and in fact just
picking bases at random will quickly find a witness. This is the basis for the Miller-Rabin
probabilistic primality test.

We now give a brief sketch of how Theorem 58 is proved, stating which classical results
of number theory are necessary for the result.

The proof aims to find a proper subgroup B of the multiplicative group Z∗
n which

contains all the nonwitnesses. This will then imply the result, since by Lagrange’s theorem
the size of a subgroup must divide the size of the group, and so |B| ≤ |Z∗

n|/2 = φ(n)/2 ≤
(n− 1)/2.

Firstly, assume that there exists an x ∈ Z∗
n such that xn−1 mod n 6= 1. In this case we

choose B = {x ∈ Z∗
n : xn−1 mod n = 1}. The Fermat test ensures that all nonwitnesses

are members of B, and since B is closed under multiplication it is a proper subgroup of
Z∗

n. Therefore in this case the proof is finished.

51729 is also famous as the Hardy-Ramanujan number, explained by C. P. Snow in the foreword to
A Mathematician’s Apology (Hardy, 1993): “Once, in the taxi from London, Hardy noticed its number,
1729. He must have thought about it a little because he entered the room where Ramanujan lay in
bed and, with scarcely a hello, blurted out his disappointment with it. It was, he declared, ‘rather a
dull number,’ adding that he hoped that wasn’t a bad omen. ‘No, Hardy,’ said Ramanujan, ‘it is a very
interesting number. It is the smallest number expressible as the sum of two cubes in two different ways.’ ”
(103 + 93 = 1729 = 123 + 13)

6In fact, it is possible to prove a stronger result that the number of nonwitnesses must be at most
φ(n)/4, and furthermore this bound can be attained (an example is the Carmichael number 8911).

5.2. COMPUTATIONAL NUMBER THEORY 97

Secondly, assume that for every x ∈ Z∗
n we have that xn−1 mod n = 1. We next show

by contradiction that n cannot be a prime power. If n = pa (with p prime and a > 1), then
Z∗

n is cyclic, and so there exists an element g ∈ Z∗
n with order φ(n) = φ(pa) = pa−1(p−1).

But gn−1 mod n = 1, and so pa−1(p−1) | pa−1. This is a contradiction, since p | pa−1(p−1)
but p 6 | pa − 1.

Since n is composite but not a prime power, we can find two numbers 1 < a, b with
gcd(a, b) = 1 and ab = n. At this point we require the unique r, s such that n− 1 = 2rs
and s odd. Next we find a maximal j ∈ {0, . . . , r} such that there exists a v ∈ Z∗

n with
v2js mod n = n − 1. Such a j must exist, because since s is odd we can set j = 0 and
v = n− 1. Now choose

B = {x ∈ Z∗
n : x2js mod n = 1 ∨ x2js mod n = n− 1}

B is closed under multiplication and so is a subgroup of Z∗
n; also the maximality of j

ensures that B must contain all nonwitnesses. It remains only to show that B 6= Z∗
n. By

the Chinese remainder theorem there exists w ∈ Z∗
n such that

w mod a = v mod a ∧ w mod b = 1

and so
w2js mod a = a− 1 ∧ w2js mod b = 1

Hence by the Chinese remainder theorem w2js mod n cannot be equal to either 1 or n−1,
so w /∈ B and the proof is complete.

5.2.3 Formalization

Formalizing this proof in HOL was a long but mostly routine task, resulting in the theories
depicted in Figure 5.1. The most time-consuming activity was a thorough development
of group theory, from the initial axioms through to classical results such as Lagrange’s
theorem (5.9), Fermat’s little theorem for groups (5.10) and the structure theorem for
Abelian groups (5.11):

` ∀G ∈ finite group. ∀H ∈ subgroup G. |set H| | |set G| (5.9)

` ∀G ∈ finite group. ∀ g ∈ set G. g|set G| = e (5.10)

` ∀G ∈ finite group. (5.11)

abelian G⇒ ∃ g ∈ set G. ∀h ∈ set G. h|g| = e

This development also allowed some classical arithmetic theorems to be rendered in the
language of groups, including the Chinese remainder theorem (5.12) and the existence of
primitive roots (5.13):

` ∀ p, q. (5.12)

1 < p ∧ 1 < q ∧ gcd p q = 1 ⇒
(λx. (x mod p, x mod q)) ∈

group iso (mult group pq)

(prod group (mult group p) (mult group q))

` ∀ p, a. (5.13)

odd p ∧ prime p ∧ 0 < a ⇒ cyclic (mult group pa)

98 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

predicate_sets

groups

lists

orders

natural_number_polynomials

arithmetic

finite_groups

binomials

multiplicative_groupsreals

miller_rabin

probability

fundamental_theorem_arithmetic

abelian_groups

miller_rabin_ml

Boxes indicate pre-existing HOL theories, and ellipses are theories created for this devel-
opment.

Figure 5.1: The Dependency Relation between the Theories of the HOL Formalization.

5.2. COMPUTATIONAL NUMBER THEORY 99

As well as making the arithmetic theorems more concise, this rendering also allowed
the main proof to proceed entirely in the language of groups, eliminating the burden
of switching mathematical context in the middle of a mechanical proof and incidentally
mirroring the informal proof in Section 5.2.2.

The most difficult part of the whole formalization was theorem (5.13), guaranteeing
the existence of primitive roots. This required creating new HOL theories of natural
number polynomials and Abelian groups for the a = 1 case, and a subtle argument from
Baker (1984) for the step case.

One surprising difference between the informal mathematics and the formalization
involved the use of the fundamental theorem of arithmetic. This states that every nat-
ural number can be uniquely factorized into primes, and many informal mathematical
proofs begin by applying this to some variable mentioned in the goal (e.g., by saying “let
pa1

1 · · · p
ak
k be the prime factorization of n.”) However, although we had previously formal-

ized the fundamental theorem and it was ready to be applied, in the mechanical proofs
we always chose what seemed to be an easier proof direction and so never needed it. Two
examples of this phenomenon occur in the structure theorem for Abelian groups (5.11),
and the cardinality of the witness set (Theorem 58): the former theorem we formalized
using least common multiples which proves the goal more directly; and in the latter all
we needed was a case split between n being a prime power or being a product of coprime
p, q, so we separately proved this lemma.

Finally, this development provided a testing ground for our predicate set prover de-
scribed in Appendix B. This automatic proof procedure takes a term t, and derives par-
ticular sets S such that t ∈ S can be proved in the current logical context. The procedure
works by first recursively deriving sets for the subterms ti of t, and then using this infor-
mation to derive sets for the term t. For example, consider the set P = {m : N | 0 < m},
where the following theorems allow membership t ∈ P to be deduced from knowledge of
ti ∈ P :

` t1 ∈ P ∨ t2 ∈ P ⇒ t1 + t2 ∈ P
` t1 ∈ P ∧ t2 ∈ P ⇒ t1t2 ∈ P

So, for instance,

m ∈ P ∨ n ∈ P ∨ p ∈ P ⇒ m+mn+mnp ∈ P

The set membership t ∈ P is clearly equivalent to the property 0 < t, and there
are many more properties that can be phrased more or less directly as set memberships.
These include group membership (e.g., g ∗G h ∈ set G) and nonemptiness properties of
lists and sets (e.g., l 6= []). The predicate set prover can be used to robustly prove all of
these simple properties, and these come up time and again as side-conditions that must
be proved during term rewriting. As a consequence, this new automatic proof procedure
lent itself to more efficient development of the theories that needed to be formalized in
this verification, particularly the group theory where almost every theorem has one or
more group membership side-conditions.

If the predicate set prover had not been available, it would have been possible to use
the first-order prover to show most of the side-conditions, but there are three reasons
why this is a less attractive proposition: firstly it would have required effort to find the

100 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

right ‘property propagation’ theorems needed for the each goal; secondly the explicit
invocations would have led to more complicated tactics; and thirdly some of the goals
that can be proved using our specialized tool would simply have been out of range of a
more general first-order prover.

5.3 Probability Theory

5.3.1 Guaranteed Termination

In most algorithm textbooks this is how the Miller-Rabin test is defined:

Given an odd integer n greater than 1, we pick a base a at random from the set
{1, . . . , n− 1} and call witness n a. Suppose n is composite: since at least (n− 1)/2
of the bases in the set are guaranteed to be witnesses, the probability that the
procedure errs is at most ((n− 1)/2) / (n− 1) = 1/2.

This abstract view implicitly assumes a generator of uniform random numbers in the
range {0, . . . , n − 1}, and would appear to be a natural application for our prob uniform
sampling algorithm for the Uniform(n) distribution that we verified in Section 4.3. How-
ever, since prob uniform employs probabilistic termination, it is prudent to first consider
the implications of this decision. When input a prime the Miller-Rabin test is always
meant to return > (the only error that is permitted is the return of > for a composite). If
an implementation of Miller-Rabin employs probabilistic termination then this property
may be shown to hold with probability 1, but if not then we can prove it for every input
sequence of random bits: a much stronger statement. As well as being a more satisfying
solution for theoretical reasons, it also confers a practical benefit. We can use our formal-
ization of a pseudo-random number generator (Section 3.4) to execute our Miller-Rabin
test in the logic: if it returns ⊥ then we can immediately deduce the HOL theorem that
the input number is composite.

In fact, we can use a single observation to relax the requirement from perfectly uniform
random numbers to approximately-uniform random numbers, and we may then use the
sampling algorithm prob uniform cut that is guaranteed to terminate. The observation is
that the base 1 is always going to be a nonwitness for every n, so to find witnesses we can
pick bases from the subset {2, . . . , n − 1}. Now if we can guarantee that the probability
of picking each element from this subset is at least 1/(n − 1), then the probability that
we pick a witness is still at least (1/(n− 1))((n− 1)/2) = 1/2.

Recall from Chapter 3 that we model probabilistic algorithms as state-transforming
functions B∞ → α × B∞, where the state models the generator of random bits and has
the type B∞ of infinite boolean sequences. The probabilistic algorithm prob uniform cut
has an extra parameter t which allows us to specify how close the resulting distribution
should be to the ideal Uniform(n). Its correctness theorem is as follows:

` ∀ t, n, k.
k < n ⇒ |P {s | fst (prob uniform cut t n s) = k} − 1/n| ≤ 2−t

Thus if we use the natural number function log2 that is related to calculating logarithms
to the base 2

` ∀n. log2 n = if n = 0 then 0 else suc (log2 (n div 2)) (5.14)

5.3. PROBABILITY THEORY 101

` ∀n, t. (5.15)

0 < n ∧ 2(log2 (n+ 1)) ≤ t ⇒ 2−t ≤ 1/n− 1/(n+ 1)

then the following theorem holds:

` ∀ t, n, k. (5.16)

k < n ∧ 2(log2 (n+ 1)) ≤ t ⇒
1/(n+ 1) ≤ P {s | fst (prob uniform cut t n s) = k}

Therefore, if we set the threshold t to be greater than 2(log2(n+1)), then for each k ∈
{0, . . . , n−1} the probability that uniform t n s yields the result k is greater than 1/(n+1).
Coupled with the observation above, this approximation to the uniform distribution is
sufficient to implement a version of Miller-Rabin that is guaranteed to terminate.

5.3.2 Definition of the Miller-Rabin Test

Having established that guaranteed termination is possible, we are now in a position to
define (one iteration of) the Miller-Rabin probabilistic primality test.

Definition 59 A Single Iteration of the Miller-Rabin Primality Test

` ∀n. (5.17)

miller rabin 1 n =

if n = 2 then unit >
else if n = 1 ∨ even n then unit ⊥
else

bind (prob uniform cut (2(log2 (n− 1))) (n− 2))

(λ a. unit (¬witness n (a+ 2)))

This satisfies the correctness theorems

` ∀n, s. prime n ⇒ fst (miller rabin 1 n s) (5.18)

` ∀n. ¬prime n ⇒ 1/2 ≤ P {s | ¬fst (miller rabin 1 n s)} (5.19)

` ∀n. miller rabin 1 n ∈ indep fn (5.20)

In order to define the full Miller-Rabin which tests several bases, we create a new
(state-transformer) monadic operator many. The intention of many p n is a test that
repeats n times the test p using different parts of the random bit stream, returning true
if and only if each evaluation of p returned true. For instance, sdest is the destructor
function for a stream, and so the function many sdest 10 tests that the next 10 booleans
in the random stream are all >. Here is the definition of many and some basic properties:

` ∀ f, n. (5.21)

many f 0 = unit > ∧
many f (suc n) = bind f (λx. if x then many f n else unit ⊥)

` ∀ f, n. (5.22)

f ∈ indep fn ⇒ P {s | fst (many f n s)} = (P {s | fst (f(s))})n

` ∀ f, n. f ∈ indep fn ⇒ many f n ∈ indep fn (5.23)

102 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

n Run time GC time

225
+ 1 53.080 7.170

226
+ 1 370.210 53.530

227
+ 1 2842.920 409.620

228
+ 1 22095.770 3170.780

Table 5.1: Testing the Composite Prover

Using the new many operator it is simple to define the multiple iteration Miller-Rabin
test miller rabin.

Definition 60 The Miller-Rabin Primality Test

` ∀n, t. miller rabin n t = many (miller rabin 1 n) t (5.24)

Finally, the correctness of the Miller-Rabin primality test (Theorem 56) follows from
(5.18)–(5.24).

5.3.3 A Compositeness Prover

For any input prime p, Theorem 56 gives us a very strong guarantee: for any t and any
sequence s, our implementation of the Miller-Rabin test will always output >. Therefore,
given a number n and a sequence s, if execution of miller rabin n 1 s gives the result ⊥,
then we can immediately deduce the HOL theorem ` ¬prime n.

Section 3.4 gives us all the machinery we need to execute the Miller-Rabin test inside
the HOL logic.7 Table 5.1 gives the run times in seconds (including garbage collection
(GC) time) that was taken to prove the compositeness of some Fermat numbers.

The last number in this table has 78 digits, and demonstrates the possibility of formally
proving numbers to be composite with no knowledge of their factors. Since this proof
procedure is not the main focus of this chapter (rather an interesting digression), we shall
not do any more profiling than this. However, one point that can be made from the
existing results is that from each line of the table to the next, the number of digits in n
roughly doubles while the run time increases by a factor of 8. This cubic growth is indeed
what we would expect if we executed the algorithm in ML, contributing more empirical
evidence to the theoretical result that the efficiency of computeLib is a constant factor
away from ML.

5.4 Extraction to Standard ML

The advantage of extracting the algorithm to a standard programming language such as
ML is twofold: firstly execution is more efficient, and so the algorithm can be applied to
usefully large numbers; and secondly it can be packaged up as a module and used as a
reliable component of larger programs.

7We use the linear congruence pseudo-random bit generator, with parameters A = 103, B = 95 and
N = 79.

5.4. EXTRACTION TO STANDARD ML 103

However, there is a danger that the properties that have been verified in the theo-
rem prover are no longer true in the new context. In this section we make a detailed
examination of the following places where the change in context might potentially lead
to problems: the source of random bits, the arbitrarily large natural numbers, and the
manual translation of the Miller-Rabin functions to ML. Finally we test the algorithm on
some examples, to check again that nothing has gone amiss and also to get some idea of
the performance and computational complexity of the code.

5.4.1 Random Bits

Our theorems are founded on the assumption that our algorithms have access to a gen-
erator of perfectly random bits: each bit has probability of exactly 1

2
of being either 1

or 0, and is completely independent of every other bit. In the real world this idealized
generator cannot exist, and we must necessarily select an approximation.

The first idea that might be considered is to use a pseudo-random number genera-
tor, such as the linear congruence method we used to execute the Miller-Rabin test in the
logic. These have been extensively analysed (for example by Knuth (1997)) and pass many
statistical tests for randomness, but their determinism makes them unsuitable for applica-
tions that require genuine unpredictability. For instance, when generating cryptographic
keys it is not sufficient that the bits appear random, they must be truly unpredictable
even by an adversary intent on exploiting the random number generator used.

Rejecting determinism, we must turn to the operating system for help. Many modern
operating systems can utilize genuine non-determinism in the hardware to provide a higher
quality of random bits. For example, here is a description of how random bits are derived
and made available in Linux, excerpted from the relevant man page:

“The random number generator gathers environmental noise from device drivers
and other sources into an entropy pool. The generator also keeps an estimate of the
number of bit[s] of the noise in the entropy pool. From this entropy pool random
numbers are created.

When read, the /dev/random device will only return random bytes within the
estimated number of bits of noise in the entropy pool. /dev/random should be
suitable for uses that need very high quality randomness such as one-time pad or
key generation. When the entropy pool is empty, reads to /dev/random will block
until additional environmental noise is gathered.

When read, /dev/urandom device will return as many bytes as are requested.
As a result, if there is not sufficient entropy in the entropy pool, the returned values
are theoretically vulnerable to a cryptographic attack on the algorithms used by the
driver. Knowledge of how to do this is not available in the current non-classified
literature, but it is theoretically possible that such an attack may exist. If this is a
concern in your application, use /dev/random instead.”

These devices represent the highest quality source of randomness to which we have easy
access, and so we have packaged them up as ML boolean streams for use in our extracted
program.

104 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

5.4.2 Arbitrarily Large Natural Numbers

Another place where there is a potential disparity between HOL and ML regards their
treatment of numbers. The HOL algorithm operates on the natural numbers {0, 1, 2, . . .},
while in ML the primitive type int contains signed numbers in a range depending on the
machine architecture.

We resolved this incompatibility by creating the ML module HolNum, which implements
an equality type num of arbitrarily large natural numbers. The Miller-Rabin functions may
then use this type of numbers, and the arithmetic operations will behave exactly as in
HOL.

We first implemented our own large number module, written in the purely functional
subset of ML (and using a word vector representation of numbers). However, this was
found to be about 100 times slower than the Moscow ML interface to the GNU Multi-
Precision library,8 so we switched to this instead.

5.4.3 Extracting from HOL to ML

A further place where errors could creep in is the manual extraction of the Miller-Rabin
functions from HOL to ML. Consequently we did this in two steps, the first of which was
creating a new HOL theory containing a version of all the functions we wish to extract.
For example, in theorem (5.21) the monadic operator many was defined like so

` ∀ f, n.
many f 0 = unit > ∧
many f (suc n) = bind f (λx. if x then many f n else unit ⊥)

and in this new HOL theory we prove it is equivalent to

` ∀ f, n.
many f n =

if n = 0 then unit >
else bind f (λx. if x then many f (n− 1) else unit ⊥)

so that we may export it to ML as

fun MANY f n =
if n = ZERO then UNIT true
else
BIND f (fn x => if x then MANY f (n -- ONE) else UNIT false);

As can be seen here the ML version involves some lexical changes,9 but has precisely
the same parse tree as the intermediate HOL version. This reduces the chance of er-
rors introduced by the cut-and-paste operation. To compare the two versions of all the
functions we use, refer to the HOL theory miller rabin ml and the ML program file
Miller.sml in Appendix D.

8http://www.swox.com/gmp/
9For example, ZERO, true and -- are the ML versions of the HOL terms 0, > and −.

5.4. EXTRACTION TO STANDARD ML 105

An intellectually interesting problem in the extraction is the question of how to handle
partial functions. Consider the HOL function prob uniform cut that generates (approxi-
mations to) uniform random numbers:

` ∀ t, n. prob uniform cut t (suc n) = if t = 0 then unit 0 else . . .

The function is deliberately underspecified: there is no case where the second argument
takes the value 0 because it does not make sense to talk of random numbers uniformly
distributed over the empty set. HOL allows us to define functions like this, but there is no
immediate ML equivalent. In the intermediate HOL version, we prove it to be equivalent
to

` ∀ t, n.
prob uniform cut t n =

if n = 0 then prob uniform cut t n else if t = 0 then unit 0 else . . .

This rather strange theorem represents an explicitly total version of the prob uniform cut
function. Of course if we simply extract this to ML it will loop forever when called with
second argument 0, so we extract in the following way:

fun prob_uniform_cut t n =
if n = ZERO then raise Fail "prob_uniform_cut: out of domain"
else if t = ZERO then UNIT ZERO
else ...

This device allows us to faithfully extract partial functions with as much confidence
as for total functions.

5.4.4 Testing

It would be pleasant to say that since the function had been mechanically verified, no
testing was necessary. But the preceding sections have shown that this would be naive.
Even if we are prepared to trust the generation of random bits, the operations of our
arbitrarily large number module and the manual extraction of the algorithms, testing
would still be prudent to catch bugs at the interface between these components.

The first quick test was an ML version of Rabin’s 2400 test mentioned in the introduc-
tion: with the number of tries (the t parameter) set to 50 the program took 15 seconds
to confirm that 2400 − 593 is indeed the smallest (probable) prime below 2400.

The main test proceeded in the following way: for various values of l, generate n
odd candidate numbers of length l bits. Perform a quick compositeness test on each by
checking for divisibility by the first l primes, and also run Miller-Rabin with the maximum
number of bases fixed at 50. The results are displayed in Table 5.2. El,n(composite) is
equal to n(1−Pl(prime)) and mathematically estimates the number of composites that the
above algorithm will consider as candidates.10 QC is the number of candidates that were

10Using the prime number theorem, π(n) ∼ n/ log n, we can derive:

Pl(prime) =
π(2l)− π(2l−1)

2l−2
∼ 2

log 2

(
2
l
− 1

l − 1

)

106 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

l n El,n QC MR MR+

10 100000 74352 70262 70683 520
15 100000 82138 72438 80448 85
20 100000 86332 74311 85338 5
50 100000 94347 79480 94172 0

100 100000 97144 82258 97134 0
150 100000 98089 83401 98077 0
200 100000 98565 84370 98557 0
500 100000 99424 86262 99458 0

1000 100000 99712 87377 99716 0
1500 100000 99808 87935 99798 0
2000 100000 99856 88342 99852 0

Table 5.2: Testing the Extracted Miller-Rabin Algorithm

l Gen time QC time MR1 time

10 0.0004 0.0014 0.0028
15 0.0007 0.0017 0.0041
20 0.0009 0.0019 0.0054
50 0.0023 0.0034 0.0136

100 0.0068 0.0075 0.0370
150 0.0107 0.0112 0.0584
200 0.0157 0.0156 0.0844
500 0.0443 0.0416 0.2498

1000 0.0881 0.0976 0.7284
1500 0.1543 0.2164 1.7691
2000 0.3999 0.2843 4.2910

Table 5.3: Profiling the Extracted Miller-Rabin Algorithm

found to be divisible by the quick compositeness test, MR is the number that the Miller-
Rabin algorithm found to be composite, and finally MR+ is the number of candidates
that the Miller-Rabin algorithm needed more than one iteration to determine that it was
composite.

The most important property for testing purposes cannot be deduced from the table:
for each number that the quick compositeness test found to be composite, the Miller-
Rabin test also returned this result (and as can be seen, this almost always required only
one iteration). In the other direction, using the El,n column as a guide, we can see that
the Miller-Rabin algorithm did not find many more composites than expected.

In Table 5.3 we compare for each l the average time in seconds11 taken to generate a
random odd number, subject it to the quick composite test, and perform one iteration of
the Miller-Rabin algorithm.

11These results were produced using the Moscow ML 2.00 interpreter and RedHat Linux 6.2, running
on a computer with a 200MHz Pentium Pro processor and 128Mb of RAM.

5.5. CONCLUDING REMARKS 107

Figure 5.2: Graph of log(MR1 time) against log l.

The complexity of (one iteration of) the Miller-Rabin algorithm is around O(l2 log l),
since it uses asymptotically the same number of operations as modular exponentiation
(Cormen et al., 1990). However, performing linear regression on the log-log graph in
Figure 5.2 gives a good fit with degree 1.32, implying a complexity of O(l1.32). We can
only conclude that the GNU Multi-Precision library is heavily optimized for the ‘small’
numbers in the range we were using, and so we cannot expect an asymptotically valid
result.12

5.5 Concluding Remarks

The main result of this chapter is that our framework for verifying probabilistic programs
is powerful enough to formally verify the Miller-Rabin primality test in the HOL theorem
prover, a well-known and commercially used probabilistic algorithm.

The predicate set prover helped to make the proof development more efficient; it was
particularly useful for proving group membership conditions and simple but ubiquitous
arithmetic conditions. Our evaluation is that it is a useful tool for reasoning about term
properties that naturally propagate up terms, and a useful condition prover for contextual
rewriters.

The difference between formal and informal proofs in their use of the fundamental

12Contrast this with the same experiment performed using our own purely functional implementation
of arbitrarily large numbers. Linear regression on the log-log graph now gives a good fit with degree 2.98,
confirming the theoretical result since we used the simple O(l2) algorithm for multiplication. Incidentally,
garbage collection was not the bottleneck in this implementation, typically accounting for less than 5%
of the time taken.

108 CHAPTER 5. THE MILLER-RABIN PRIMALITY TEST

theorem of arithmetic was pointed out in Section 5.2.3. This is the most striking example
of many small differences in the style of informal and formal proofs, stemming from the
different proof consumers in each case. Machines make it easier to formalize principles
of induction such as dividing out a prime or prime power factor of a number, whereas
humans would seem to be better at reasoning with the multisets that contain the prime
factors.

There has been a long history of number theory formalizations, most relevantly for
us: a proof of Wilson’s theorem in the Boyer-Moore theorem prover by Russinoff (1985);
a correctness proof of the RSA algorithm in ACL2 by Boyer and Moore (1984); and a
correctness proof of RSA in three different theorem provers by Théry (1999). This last
work was especially useful, since one of the theorem provers was hol98, and we were able
to use his proof of the binomial theorem in our own development.

Though lacking any probabilistic algorithms, the closest work in spirit to this chapter
is some recent work on primality proving in Coq by Caprotti and Oostdijk (2001). They
formalize a similar computational number theory development, and utilize a computer
algebra system to prove numbers prime. Seeing this work improved the organization of
theories in our own formalism. Harrison has also implemented a primality prover in HOL
(Light), using Pratt’s criterion instead of Pocklington’s.

Our own development of group theory benefitted from the developments of Gunter
(1989), Kammüller and Paulson (1999) and Zammit (1999); the theory of groups has
been formalized in many other theorem provers as well.

Chapter 6

Summary

The aim of this thesis has been to show that probabilistic algorithms can be formally
verified using a mechanical theorem prover, ‘just like deterministic algorithms.’

We began in Chapter 2 with an extensive foundational development of probability,
creating a higher-order logic formalization of mathematical measure theory. This allowed
the definition of the probability space we use to model a random bit generator, which
informally is a stream of coin-flips, or technically an infinite sequence of IID Bernoulli(1

2
)

random variables. In Chapter 3 we introduced a simple higher-order logic formalism
of probabilistic programs, and introduced a probabilistic while loop that allowed us to
define probabilistic programs that terminate with probability 1. Using our formalized
theory of probability we were able to write specifications for our probabilistic programs,
and special emphasis was placed on developing technical support to expedite practical
verification in a mechanical theorem prover. Finally, in Chapter 4 we demonstrated the
formal framework with some example probabilistic programs: sampling algorithms for
four probability distributions; some optimal procedures for generating dice rolls from coin
flips; the symmetric simple random walk; and in Chapter 5 the Miller-Rabin primality
test.

This work has made a number of original contributions to knowledge; these were
pointed out throughout the text, and here we collect them together in categories and
summarize them:

Probabilistic Algorithms: Our formal framework has allowed us to connect work on
sampling probability distributions to textbook presentations of random algorithms.
In addition to the theoretical benefits of seeing how the underlying reliance on a
source of random bits manifests itself at the level of the random algorithm, we also
extracted some practical mileage from this connection. Seeing that strong properties
can be proved of probabilistic programs that avoid probabilistic termination, we
deliberately created a version of the Miller-Rabin primality test that is guaranteed
to terminate, and thus for each input an upper bound exists on how many random
bits it will require.

Formal Methods: This work has demonstrated that probabilistic algorithms can be
verified in a standard theorem prover, and since we have developed our theory as a
definitional extension of higher-order logic, we can have complete confidence in the
properties we prove. Our most significant contributions in this area are: the com-
positional property indep fn, showing that all probabilistic programs we construct

109

110 CHAPTER 6. SUMMARY

using our primitives satisfy useful properties of measurability and independence;
and the probabilistic while reduction theorem, showing how potentially difficult
proofs about probabilistic termination reduce to standard induction techniques. In
addition, our extraction of the Miller-Rabin primality test gave an example of soft-
ware engineering of probabilistic algorithms when a high assurance of correctness is
required.

Formalized Mathematics: The formalization of mathematics into logic with the aid
of mechanical theorem provers is already well-established; indeed the process is vir-
tually industrialized in the Mizar theorem prover. In this thesis we have focussed on
showing the utility of such endeavours, by applying formalized theories to the practi-
cal task of verifying probabilistic algorithms. Nevertheless, this has necessitated the
formalization of some mathematics that has not been previously attempted, such
as Carathéodory’s extension theorem and the construction of a non-measurable set
in probability theory, and the existence of primitive roots and the cardinality of the
Miller-Rabin witness set in computational number theory. For interest, we present
here some approximate values for the ‘de Bruijn factor’ (dB)

dB (theorem) =
size of textbook proof

size of machine proof

of three textbooks we used:

dB
(

Carathéodory’s extension theorem
assuming real analysis

)
=

4 1
2 pages of Williams (1991)

1200 proof script lines

dB
(

Miller-Rabin witness theorem
assuming number theory

)
=

1 1
2 pages of Cormen et al. (1990)

600 proof script lines

dB
(

Multiplicative group of pa is cyclic
assuming group theory

)
=

1
2 page of Baker (1984)
400 proof script lines

Theorem Proving: The investigation (in Appendix B) of PVS predicate subtyping—
and showing the extent to which it can be simulated in HOL with predicate sets—
provides an interesting comparison of the two theorem provers. One advantage of
working in an LCF theorem prover is that the ML programming language is provided
for the user to create new proof tools in a secure fashion. Our predicate set prover
is a typical example of developing such a tool: automating a particular pattern of
reasoning and then immediately deploying it in our formalization proofs; without
needing to worry that soundness may have been violated in some way.

6.1 Future Work

The concluding remarks of each chapter suggested possible improvements and extensions
that could be made, and so here we consider larger additions to this work.

• Now that we have developed a verification infrastructure, we intend to deploy it
in application areas that rely on probabilistic algorithms. Examples include web
anonymizing services (such as Crowds (Reiter and Rubin, 1999)) which use prob-
abilistic algorithms to prevent web servers from learning information that could

6.1. FUTURE WORK 111

identify their visitors; financial applications which calculate prices of complex bonds
using Monte Carlo integration algorithms (Fishman, 1996); and hardware simula-
tors which generate test vectors probabilistically to avoid any bias that may lead to
missing a fault (Bardell et al., 1987).

• Currently the probabilistic programs we verify are expressed as higher-order logic
functions. It would be possible to formalize in HOL a little while-language contain-
ing a probabilistic primitive for obtaining a random bit, and use this to express our
probabilistic programs. Such a deep embedding would even allow us to capture a
class of strongly independent probabilistic programs in a new HOL type, removing
many side-conditions of theorems.

• Verifying more examples of probabilistic algorithms will inevitably necessitate more
formalization; in particular we already can see that a theory of expectation will be
required to prove the correctness of probabilistic quicksort. If we can continue our
policy of formalizing standard theorems of mathematics to aid verifications, then
this will provide long-term benefits to many users of the HOL theorem prover.

• Proof tools to aid formalization can never be too powerful, and we certainly had
the impression during our work so far that more could be done to help the user.
Although it is difficult to predict exactly where the real benefits will lie in this area,
we consider the development of general proof tools to be an important complement
to the development of theories.

• Finally, the extraction to ML was an interesting part of the Miller-Rabin verification,
and we built from scratch the infrastructure that enabled us to do this. It would
be interesting to push this further, perhaps aiming for a whole library of verified
functions built upon some trusted primitives.

112 CHAPTER 6. SUMMARY

Appendix A

Higher-order Logic and the HOL
Theorem Prover

This appendix contains a very brief introduction to higher-order logic and its implemen-
tation in the HOL theorem prover, containing no more than is necessary for a reader
wishing to understand the basis on which this thesis is built. A detailed introduction is
given by Gordon and Melham (1993) in the canonical reference: Introduction to HOL (A
theorem proving environment for higher order logic).

A.1 Terms and Types

Terms in higher-order logic are typed, and we write t : τ to mean that term t has type
τ . It is helpful to identify types with the set of their elements, so for example the type of
booleans is B = {>,⊥}, while the type of natural numbers is N = {0, 1, 2, . . .}. Compound
types may be created by using type operators; an important example is the function space
type operator · → ·, so the type N→ B is the set of functions mapping natural numbers
to either > or ⊥. Another example is the list type operator ·∗, allowing us to create types
such as

B∗ = {[], [>], [⊥], [>,>], . . .}
Finally, we allow an infinite set {α, β, . . .} of type variables, which may instantiate to
any higher-order logic type. An example of this is the type α∗ of lists containing elements
of type α. This mechanism of polymorphism allows us to prove theorems once about the
type α∗ of lists containing elements of type α, and then instantiate α multiple times to
give us the same theorems about B∗, (N→ B)∗, β∗∗ etc.

The terms of higher-order logic are terms of λ-calculus (Church, 1940), where the
syntax λx. t[x] should be read as ‘the function that takes an x and returns t[x].’ The λ
binds x, so for example the application of λx. λ x. x to y yields the result λx. x (and
not λx. y). The restriction to typed terms of λ-calculus means that every term must be
well-typed (or inconsistencies emerge in the form of the Russell paradox), where the type
relation is calculated as follows:

Variables: All variables v : τ are well-typed.

Constants: Constants are given a type when they are defined, for example > : B,
[] : α∗, = : α → α → B and prime : N → B. Any type variables that they contain

113

114 APPENDIX A. HIGHER-ORDER LOGIC AND HOL

may be specialized when they are used in terms, so for example the term [] : N∗ is
well-typed.

Function applications: A function term f : α→ β is well-typed when applied to any
argument term x : α, and the result is f(x) : β.

λ-abstractions: Given a variable v : α and a term t[v] : β, the λ-abstraction (λ v. t[v]) :
α→ β is well-typed.

Using a type-inference algorithm of Milner (1978), it is possible to take a term t that does
not contain any type information at all, and deduce a most general type for the term (or
raise an error if it is not well-typed). Therefore, when we write terms t : τ of higher-
order logic we can safely leave off the type annotation : τ without causing ambiguity. We
generally only include type annotations to make things clearer to the reader.

A.2 Theorems

Theorems in higher-order logic are sequents Γ ` t where the term t is the conclusion of
the theorem, and the set of terms Γ are the hypotheses of the theorem. Typically of LCF
theorem provers, HOL allows the creation of theorems only in the logical kernel, which
faithfully executes the primitive rules of inference of higher-order logic. For example:

` t = t
REFL

Γ ` s = t ∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ[α] ` t[α]

Γ[σ] ` t[σ]
INST TYPE

` (λx. t[x]) u = t[u]
BETA CONV

These are four of the primitive rules of inference, asserting that the equality relation is
both reflexive and transitive, that type variables in a theorem may be instantiated to any
higher-order logic type, and that the usual β-conversion of λ-calculus is valid in higher-
order logic. These primitive rules of inference appear in the ML signature of the logical
kernel as follows:

REFL : term→ thm

TRANS : thm→ thm→ thm

INST TYPE : hol type× hol type→ thm→ thm

BETA CONV : term→ thm

Since the ML type thm is abstract, the type security of ML ensures that the functions in
the logical kernel represent the only way that theorems may be created.

A principle of definition implemented as a function in the logical kernel allows new
constants to be defined. Given a theorem1 ` ∃ c : α. P (c), it makes a new constant c : α
and returns the characterizing theorem ` P (c). Standard definitions of the form ` c = t
are covered in this scheme, since the theorem ` ∃ c. c = t follows trivially by taking the
witness to be t.

To help the reader with the HOL theories in Appendices C and D, in Table A.1 we
tabulate the HOL versions of some mathematical symbols we have used.

1For this to be valid, we must insist that P (c) contains no free variables other than c and no type
variables other than those in α.

A.2. THEOREMS 115

HOL Mathematical English

\ λ Lambda abstraction
! ∀ Universal quantification
? ∃ Existential quantification
/\ ∧ Conjunction
\/ ∨ Disjunction
==> ⇒ Implication
~ ¬ and − Logical and numerical negation
= = and⇐⇒ Equality and ‘if and only if’
{} ∅ Empty set
UNIV Uα Universe set (type α implicit)
!* ∀∗ ‘Probably’ probabilistic quantifier
?* ∃∗ ‘Possibly’ probabilistic quantifier

Table A.1: HOL Versions of Mathematical Symbols

116 APPENDIX A. HIGHER-ORDER LOGIC AND HOL

Appendix B

Predicate Set Prover

This appendix contains an investigation of predicate subtyping available in the PVS theo-
rem prover, and show how it may be simulated in HOL using predicate sets. This leads to
the development of a new proof procedure called the predicate set prover, which employs
this reasoning to prove a class of theorems that frequently appear as side-conditions.1

B.1 Introduction

B.1.1 An Introduction to Predicate Subtyping

PVS (Owre et al., 1999) is an interactive theorem prover implementing a similar logic to
HOL; both logics are extensions of the simple type theory of Church (1940). In HOL the
extension is Hindley-Milner polymorphism (Milner, 1978), and in PVS it is parametric
theories2 and predicate subtyping (Owre and Shankar, 1997).

Predicate subtyping allows the creation of a new type corresponding to an arbitrary
predicate, where elements of the new type are also elements of the containing type. As
a simple illustration of this, the type of real division (/) in HOL is R → R → R, and
in PVS is R → R 6=0 → R, where R is the type of real numbers and R 6=0 is the predicate
subtype of non-zero real numbers, expressed by the predicate λx. x 6= 0.

This extension of the type system allows more information to be encoded in types,
leading to benefits for specification and verification such as:

• The ability to express dependent types, for example a type for natural number
subtraction that prevents the second argument from being larger than the first
argument, or a type representing lists of a fixed length in order to model arrays.

• Greater use of types to express side-conditions of theorems, for example the PVS
rewrite rule

`PVS ∀x : R 6=0. x/x = 1 (B.1)

In HOL this would have to be expressed

` ∀x : R. (x 6= 0)⇒ (x/x = 1) (B.2)

1This appendix is a revision of Hurd (2001a).
2Parametric theories allow polymorphism at the granularity of the theory (think C++ templates),

whereas Hindley-Milner polymorphism operates at the granularity of the formula (think ML functions).

117

118 APPENDIX B. PREDICATE SET PROVER

and the extra condition must be proved each time the rule is applied.3

• More errors can be found in specifications during type-checking, giving greater con-
fidence that the goal is correct before a verification is embarked upon. Mokkedem
and Leonard (2000) observed this to be very effective in a large network protocol
verification performed in PVS. Many specifications are not verified at all, and in
that case the extra confidence is especially valuable.

However, there are also some costs:

• Type-checking becomes undecidable, so (potentially human) effort must be ex-
pended to allow terms to be accepted into the system.

• Type-correctness depends on the current logical context, imposing an extra burden
on term operations to keep careful track of what can be assumed at each subterm.
In the case of users wishing to program their own tactics this merely steepens the
learning curve; for term operations in the logical kernel faulty implementations have
produced a string of soundness bugs.4

In the literature there are papers arguing for and against predicate subtyping. On
the one hand Shankar and Owre (1999) give many examples of their utility, while on the
other Lamport and Paulson (1999) give an example where the costs must be paid without
much benefit, in this case because predicate subtypes cannot naturally encode the desired
invariant.

B.1.2 Simulating Predicate Subtyping in HOL

In Section B.2 we describe an approach to gain the functionality of predicate subtypes in
HOL, without altering the logic in any way. Instead of creating a first-class type associated
with a particular predicate P , we reason with the subset of elements that satisfy P . For
example, the PVS predicate subtype R 6=0 can be modelled with the HOL predicate set

nzreal = {x : R | x 6= 0}

With this substitution, it is possible to assign subtypes to HOL constants, where the PVS
subtype judgement is modelling with a HOL theorem. For example, we assign a subtype
to the real multiplicative inverse (reciprocal) function inv by proving the theorem

` inv ∈ nzreal
·→ nzreal

We can even extend this technique to simulate PVS predicate subtype-checking, and
present an algorithm to derive subtypes for HOL terms. If a term contains violations of
the subtypes we have assigned, then the algorithm will not be able to derive any subtypes
for the term, and the user is issued a warning about the potential problem. Thus by

3Analogously, typed logics such as HOL and PVS enjoy this advantage over an untyped logic such as
ZF set theory, in which the theorem ` ∀n : N. n + 0 = n must be expressed ` ∀n. n ∈ N⇒ (n + 0 = n).

4Shankar and Owre (1999) write “these bugs stem largely from minor coding errors rather than
foundational issues or complexities”. However, the extra complexity generated by predicate subtyping
does play a part in this: there have been very few soundness bugs found in HOL over the years.

B.2. THE FORMALISM 119

using this method, we can catch terms that contain partial functions applied outside their
domain, as in inv 0 (although as we shall see, higher-order logic imposes certain limitations
on our ability to find all violations).

The subtype derivation algorithm also gives us the extra reasoning power needed to
automatically prove side-conditions of HOL theorems that would be expressed in PVS
using predicate subtypes (such as the condition of theorem (B.2) above). We package this
up as a proof procedure called a predicate set prover, and integrate it as a condition prover
into a conditional rewriter. The resulting tool is evaluated by using it in a formalization
case-study of a body of computational number theory, and it is found to be effective on
a certain class of conditions that occur frequently and are not well-handled by existing
methods. Group theory is a fertile field for such conditions, where virtually all theorems
contain some group membership conditions, for example

` ∀G ∈ group. ∀ g ∈ set G. g ∗G idG = g

If this theorem was being used as a conditional rewrite, then after g ∗G idG was matched
in the term we would have to prove that G ∈ group and g ∈ G before rewriting it to g.
These are the kind of goals that the predicate set prover is designed to solve.

B.2 The Formalism

B.2.1 Subtypes

We model PVS subtypes with HOL predicate sets, where a predicate set is a function
P : α→ B which represents the set of elements x that satisfy P (x) = >. Note that P is
parameterized by the type α, and we shall use the terminology ‘α-set’ when we wish to
make this dependency explicit. Predicate sets are a standard modelling of sets in higher-
order logic; all the usual set operations can be defined including universe sets Uα for each
type α, and the notation {x | P (x)} refers to the predicate set λx. P (x). The following
definition gives several examples of predicate sets we use to model subtypes.

Definition 61 Examples of Predicate Sets Modelling Subtypes

` nzreal = {x : R | x 6= 0} (B.3)

` posreal = {x : R | 0 < x} (B.4)

` nnegreal = {x : R | 0 ≤ x} (B.5)

` ∀n. lenum n = {m : N | m ≤ n} (B.6)

` ∀n. nlist n = {l : α∗ | length l = n} (B.7)

` ∀P. list P = {l : α∗ | ∀x. mem x l⇒ x ∈ P} (B.8)

` ∀P,Q. pair P Q = {x : α× β | fst x ∈ P ∧ snd x ∈ Q} (B.9)

The predicate sets nzreal, posreal and nnegreal defined by (B.3)–(B.5) are straight-
forward, each representing the set of real numbers that are mapped to > by the pred-
icate on the right hand side of the definition. The predicate sets (B.6)–(B.9) are all
parameterized by various terms: in the case of lenum n by a natural number n so that
lenum n = {0, 1, . . . , n}. The sets (B.7)–(B.9) are polymorphic as well as parametric,

120 APPENDIX B. PREDICATE SET PROVER

which of course is just another way of saying they are parameterized by types as well as
terms. The set nlist n contains all α-lists having length n; the set list P contains all α-lists
satisfying the condition that each member must lie in the parameter set P ; and finally
the set pair P Q contains all (α, β)-pairs (x, y) where x lies in the first parameter set P
and y lies in the second parameter set Q.

B.2.2 Subtype Constructors

The definitions of list (B.8) and pair (B.9) in the previous subsection illustrated ‘lifting’:
an α-set is lifted to an α-list set using list, and an α-set and a β-set are lifted to a
(α× β)-set using pair. We might thus call list and pair subtype constructors, and we can
similarly define subtype constructors for every datatype. The automatic generation of
these constructors might be a worthwhile addition to the HOL datatype package.

We can also define a subtype constructor for the function space α→ β.

Definition 62 The Function Space Subtype Constructor

` ∀P,Q. P ·→ Q = {f : α→ β | ∀x ∈ P. f(x) ∈ Q} (B.10)

Given sets P and Q, f is in the function space P
·→ Q if it maps every element of P to

an element of Q.5

We can illustrate the function space subtype constructor with the following theorems
that follow from the definitions so far:6

` (λx. x2) ∈ nzreal
·→ nzreal (B.11)

` (λx. x2) ∈ UR
·→ nnegreal (B.12)

` ∀ f, p. f ∈ p ·→ UR (B.13)

` ∀ f, q. f ∈ ∅ ·→ q (B.14)

` ∀ f, p. f ∈ p ·→ ∅ ⇐⇒ p = ∅ (B.15)

There is an alternative subtype constructor for function spaces, where the result set
is dependent on the input.

Definition 63 The Dependent Function Space Subtype Constructor

` ∀P,Q. P ?→ Q = {f | ∀x ∈ P. f(x) ∈ Q(x)} (B.16)

The difference here is that Q is a parameterized set, where the parameter comes from
the set P . This allows us to model dependent predicate subtypes with predicate sets,
such as the following for natural number subtraction:

UN
?→ (λn. lenum n

·→ lenum n) (B.17)

5This definition makes use of the restricted quantifier notation of Wong (1993), and ∀x ∈ p. M(x)
expands to ∀x. x ∈ p⇒M(x).

6The infix operator ·→ associates to the right and has tighter binding than ∈, so f ∈ p
·→ q

·→ r means
the same as f ∈ (p ·→ (q ·→ r)). Also x2 here means x squared.

B.2. THE FORMALISM 121

Recall that UN is the universe set for the type N of natural numbers. We should therefore
read subtype (B.17) above as the set of functions that: given any natural number n return
a function from {0, . . . , n} to {0, . . . , n}. One point to note: if the parameterized set Q
has the form λx. Q′ where Q′ does not contain any occurrences of the bound variable x,
then P

?→ Q = P
·→ Q′: this shows that Definition 63 is more general than Definition 62.

Dependent types are familiar from type theory, and are incorporated into the LEGO
theorem prover.7

PVS also has two function space subtypes, covering the dependent and non-dependent
cases. It also allows dependent products, which we do not use. However, analogously
to

?→ it is simple to define a dependent pair constructor dpair, taking a set P and a
parameterized set Q:

` ∀P,Q. dpair P Q = {(x, y) | x ∈ P ∧ y ∈ Q(x)} (B.18)

B.2.3 Subtype Rules

Now that we have defined the form of subtype sets, we shall show how to derive subtypes
of a HOL term. Given a term t, we say that P is a subtype of t if we can prove the
theorem ` t ∈ P . In our model, these HOL theorems are analogous to PVS subtype
judgements.

The type inference algorithm of Milner (1978) for simply-typed λ-calculus is structural:
a single bottom-up pass of a well-formed term suffices to establish its most general type.8

Subtype inference also proceeds by making a single bottom-up pass to derive subtypes,
though the new situation is complicated by two factors:

• two rules to break down terms (covering function applications and λ-abstractions)
are no longer sufficient, since we also need to keep track of logical context;

• there is no concept of a ‘most general set of subtype theorems’,9 so instead we
perform proof search up to some fixed depth and return all the subtype theorems
that we can prove.

Given a term t, the subtype inference algorithm finds sets P that satisfy t ∈ P . Note
that like the simply-typed λ-calculus, there is essentially no computational difference
between type inference (i.e., finding P such that t ∈ P holds) and type checking (i.e.,
proving t ∈ P for a given P).

To keep track of logical context, we create subtype rules similar to the congruence
rules of a contextual rewriter. Here are some examples:

` ∀ c, a, b, P. (B.19)

(c ∈ UB) ∧ (c⇒ a ∈ P) ∧ (¬c⇒ b ∈ P)⇒ (if c then a else b) ∈ P
` ∀ a, b. (b⇒ a ∈ UB) ∧ (a⇒ b ∈ UB)⇒ (a ∧ b) ∈ UB (B.20)

` ∀ f, a, P,Q. (f ∈ P ?→ Q) ∧ (a ∈ P)⇒ f(a) ∈ Q(a) (B.21)

` ∀ f, P. (∀x. f(x) ∈ P (x))⇒ (λx. f(x)) ∈ (Uα
?→ P) (B.22)

7http://www.dcs.ed.ac.uk/home/lego/
8Though not completely avoiding all difficulty: Mairson (1990) has shown that the most general simple

type of a term can be exponentially large in the size of the term.
9Theoretically we could intersect all subtypes that a term t satisfies, but then we would just end up

with {t} if the logical context was consistent, or ∅ if it was not!

122 APPENDIX B. PREDICATE SET PROVER

These rules are rather long, but can be read easily from left to right. For example the
conditional subtype rule (B.19) reads: “if we can show c to be in UB; and assuming c
we can show a to be in a subtype P ; and assuming ¬c we can show b to be in the same
subtype P ; then the combined term if c then a else b must also be an element of P .” In
this way we can build up logical context. Note that c is trivially in the universe set UB,
the only purpose of retaining this condition is to force the subtype checker to recurse into
c and check all its subterms. The conjunction rule (B.20) similarly ensures that subterms
are covered by the subtype checker, while building the correct logical context.10 Also
shown are the subtype rules for function application (B.21) and abstraction (B.22), the

main point to note is that they both use the more general dependent version
?→ of the

subtype constructor for function spaces.
For each boolean constant , we need a subtype rule of the above form. Therefore the

set of subtype rules used is not fixed; we allow the user to add rules for new constants.
Subtype rules tell us how to derive subtypes for a term by combining the subtypes of

smaller terms, but they leave two questions unanswered: how to calculate the subtypes
of base terms (variables and constants); and how to unify the (possibly higher-order)
subtypes of the smaller terms, for example to match the two occurrences of P in the
antecedent of the conditional subtype rule (B.19). These questions are addressed in the
next two sections.

B.2.4 Subtypes of Constants

To calculate subtypes of a base term t : α, we maintain a dictionary of constant subtypes.11

If the term we are focussed on is a constant that appears in the dictionary, we return the
subtype theorem listed there. If the term is a variable or a constant that is not in the
dictionary, we return the default subtype theorem ` t ∈ Uα.12

Here are some miscellaneous entries in the dictionary:

` sqrt ∈ (nnegreal
·→ nnegreal ∩ posreal

·→ posreal) (B.23)

` (B.24)

inv ∈ (nzreal
·→ nzreal ∩ posreal

·→ posreal ∩ negreal
·→ negreal)

` ∀n. − ∈ UN
?→ (λn. lenum n

·→ lenum n) (B.25)

` ∀P. funpow ∈ (P
·→ P)

·→ UN
·→ P

·→ P (B.26)

` ∀P. [] ∈ (list P ∩ nlist 0) (B.27)

` ∀P, n. cons ∈ P ·→ (list P ∩ nlist n)
·→ (list P ∩ nlist (suc n)) (B.28)

10A version of the conjunction rule that does not always return the universe set UB is as follows:

` ∀ a, b, P, Q. (b⇒ a ∈ P) ∧ (a⇒ b ∈ Q)⇒ (a ∧ b) ∈ ({⊥} ∪ (P
·
∧ Q))

where
·
∧ is a lifted version of ∧ that operates on sets of booleans instead of booleans. However, the version

we present is much simpler to work with and usually all that is required in practice.
11It is up to the user to add constant subtypes to the dictionary: as yet there is no mechanism to

automatically generate these for newly defined constants, though this further work is briefly discussed in
Section B.5.

12Note that when we come to use the subtype of t later on, other subtypes may also be deduced from
the logical context.

B.2. THE FORMALISM 123

` ∀ f, P,Q, n. (B.29)

map ∈ (P
·→ Q)

·→ (list P ∩ nlist n)
·→ (list Q ∩ nlist n)

` ∀P,Q, n. (B.30)

zip ∈
(nlist n ∩ list P)

·→ (nlist n ∩ list Q)
·→ (nlist n ∩ list (pair P Q))

The universal quantification allows variables in the types of constants, and exactly like
‘forall types’ in functional programming these generate fresh variables at every instance
of the constant. The intersections that occur in the subtypes are a crude mechanism to
model full intersection types in type theory (Compagnoni, 1995).

This dictionary corresponds to the constant judgement mechanism of PVS, whereby
the type-checker can be told that for the purpose of calculating type correctness condi-
tions, particular constants are also elements of more specific subtypes than their principal
subtype.13

B.2.5 Subtype Judgements

Suppose we have a subtype rule that we are committed to using, and we have recursively
derived subtype theorems for the terms in the antecedent of the rule. We must now
deduce14 from these subtype theorems, aiming to find a consistent set of subtype theorems
that is matched by the antecedent of the rule.

Example: Suppose our term is f(a) (where f has simple type R → R); we are using
the function application subtype rule (B.21); and we have recursively shown that ` f ∈
nzreal

·→ nzreal and ` a ∈ posreal. However, in order to apply the rule we must find
instantiations of the variables P and Q such that

(f ∈ P ?→ Q) ∧ (a ∈ P)

is a theorem. We present this goal to our prover, which performs bounded proof search
and returns some instantiations, one of which corresponds to the following theorem:

` (f ∈ nzreal
?→ (λx. nzreal)) ∧ (a ∈ nzreal)

Now we can apply the rule to conclude that ` f(a) ∈ (λx. nzreal) a, which can in turn
be simplified to ` f(a) ∈ nzreal. 2

In this example, the prover needed to show a ∈ posreal ⇒ a ∈ nzreal. Steps like
these are achieved using subtype judgements:15 theorems that are manually added to the

13The principal subtype is the one asserted when the constant is defined.
14Deciding the logical context in which we should perform this deduction is quite delicate. It is sound to

use the current logical context, but not complete. A more careful approach is to use the (possibly larger)
logical context of a subterm whenever we manipulate the subtypes of that subterm. In this way if we can
deduce ` 1 ∈ nzreal and ` ¬> ⇒ 0 ∈ nzreal then we will be able to deduce ` (if > then 1 else 0) ∈ nzreal
using the conditional rule.

15The name ‘subtype judgements’ was borrowed from PVS, which contains declarations used for exactly
the same purpose.

124 APPENDIX B. PREDICATE SET PROVER

top-level logical context, and are available for use in deriving subtypes. These will be
theory specific, and can be extended by the user at any time. Examples are:

` posreal ⊂ nzreal (B.31)

` ∀P,Q. P ⊂ Q ⇒ list P ⊂ list Q (B.32)

From the example we can see that a suitable prover must be: higher-order to deal
with parameterized types; able to find multiple instantiations of a goal (‘prolog-style’);
and able to perform bounded proof search. Any prover that satisfies these criteria will be
able to plug in at this point and enable subtype derivation.

However, since there are not many provers available that can satisfy all these require-
ments, we have implemented one to test our subtype derivation algorithm. Robinson
(1970) presents an approach to higher-order proving by converting all terms to combina-
tory form.16 Together with translation to CNF this conversion leaves terms in a normal
form that simplifies the writing of automatic proof search tools. For our application we
implement a version of model elimination (mostly following the presentation of Harrison
(1996b), with some higher-order extensions), since that is able to return multiple instan-
tiations of goals and we can use a simple depth-bound to limit the search. More powerful
normalization means that it can compete with the HOL first-order prover MESON_TAC on
some first-order problems, and results on higher-order problems are basic but promising.

B.2.6 Subtype Derivation Algorithm

To summarize this section, we present the complete algorithm to derive subtypes of a
term.

Inputs: A term t having simple type α; a logical context C initialized with a set
of assumptions and the current subtype judgements; a set R of subtype rules; and a
dictionary D of constant subtypes.

Outputs: A set S of subtype theorems.

1. If t is a variable, return S = {` t ∈ Uα}.

2. If t is a constant, look in the dictionary D to see if there is an entry for t. If so,
return the entry S = {` t ∈ P}, otherwise return S = {` t ∈ Uα}.

3. Otherwise find a subtype rule in R matching t.17 The rule will have the form

` ∀~v.

(∧
1≤i≤n

∀~vi. ai[~vi]⇒ ti[~vi] ∈ Pi[~vi, ~v]

)
⇒ t ∈ P [~v] (B.33)

4. For each 1 ≤ i ≤ n, create the logical context Ci by adding the assumption ai[~vi] to
C and recursively apply the algorithm using Ci to ti to find a set of subtypes

Si = {` ti[~vi] ∈ Pi0[~vi], . . . , ` ti[~vi] ∈ Pini
[~vi]}

16Many thanks to John Harrison for drawing my attention to this paper.
17If there is more than one rule that matches, return the rule that was most recently added to R: this

is almost always the most specific rule too.

B.3. SUBTYPE-CHECKING IN HOL 125

5. Find consistent sets of subtypes by calling the following search function with counter
i← 1 and instantiation σ ← id.

(a) If i > n then return σ.

(b) Using the subtype theorems in Si and the logical context Ci, use the higher-
order prover to find theorems matched by the form

` ti[~vi] ∈ σ(Pi[~vi, ~v])

(c) For each theorem returned, let σi be the returned instantiation. Recursively
call the depth-first search function with counter i ← i + 1 and instantiation
σ ← (σi ◦ σ).

6. Each instantiation σ returned by the above search corresponds to a specialization
of the subtype rule (B.33) for which we have proven the antecedent. We may thus
deduce the consequent by modus ponens, and we add this to the result set S of
subtype theorems.

B.3 Subtype-checking in HOL

B.3.1 Debugging Specifications

We use our subtype derivation algorithm to find errors in a specification s, by invoking
the algorithm on s, and generating an exception whenever the algorithm would return an
empty set of subtypes for a subterm.

We illustrate this with the following family of specifications:

(inv x) ∗ x = 1 (B.34)

x ∈ nzreal ⇒ (inv x) ∗ x = 1 (B.35)

inv x ∈ nzreal ⇒ (inv x) ∗ x = 1 (B.36)

inv ∈ UR
·→ nzreal ⇒ (inv x) ∗ x = 1 (B.37)

inv ∈ UR
·→ UR ⇒ (inv x) ∗ x = 1 (B.38)

The subtype checker will generate an exception for specification (B.34), complaining that
it could not derive a type for the subterm inv x. An exception was raised because the
algorithm could not find a consistent set of subtypes for the subterms inv and x, when
using the subtype rule (B.21) for function application. And this we see to be true, because
without any additional knowledge of x we cannot show it to be in any of the sets nzreal,
posreal or negreal that the subtype (B.24) of the constant inv demands.

Specification (B.35) shows the right solution: add a guard to stop x from taking the
illegal value of 0. And this solves the problem, the subtype checker can now derive a
subtype of nzreal for the subterm inv x (and a subtype of UB for the whole term).

This is how we would expect the subtype checker to be used in practice. A specification
is entered and subtype checked, the errors are corrected by adding the necessary guards,
and only then is verification started. This could potentially save much wasted effort and
act as a valuable teaching tool. In addition, the derived theorems that show subtype-
correctness could be provided to the user for later use.

126 APPENDIX B. PREDICATE SET PROVER

Specifications (B.36)–(B.38) represent various attempts to subvert the subtype checker.
Specification (B.36) is a silly attempt: now the inv x in the antecedent fails to subtype
check! However, even if the antecedent were added unchecked to the logical context, the
consequent would still not subtype check: an extra subtype for inv x does not help at all in
the search to find consistent subtypes for inv and x using the rule for function application.
Specification (B.37) steps up a level in the arms race by assuming a subtype for inv, and
now this term does subtype check since the higher-order prover just needs to show that
x ∈ UR: a triviality. However, we may take consolation in the fact that this antecedent is
unprovable. Finally Specification (B.38) is the most worrying attack: the term subtype
checks, and we can use theorem (B.13) to prove the condition.

B.3.2 Logical Limits

In the previous section we showed by example how the subtype checker that we implement
may be duped into passing a term that contains a violation of subtype constraints. Unfor-
tunately, this is not just an inadequacy of the subtype checker, but rather an inescapable
consequence of reasoning with predicate sets in the HOL logic. Since HOL is a logic of
total functions, given any function f : α→ β we can prove the theorem

` f ∈ Uα
·→ Uβ (B.39)

since this just expands to
` ∀x ∈ Uα. f(x) ∈ Uβ

which is true by the definition of the universal set Uβ.
In particular, theorem (B.39) is true for all function constants f that we would like to

have a restricted domain (such as inv). But the subtype Uα → Uβ allows f to be applied to
any element of type α. This means that enforceable predicate subtyping using predicate
sets cannot exist as a layer on top of the existing HOL kernel.

Example: Even if the user is not trying to subvert the system, it might happen acciden-
tally. If we are subtype checking the specification

P ⇒ Q (inv 0)

then when we subtype check the consequent Q (inv 0) we add the antecedent P to the
logical context, and it might transpire that P somehow causes the higher-order prover to
deduce inv ∈ UR

·→ UR,18 which then allows Q (inv 0) to be successfully subtype checked.
2

To summarize the situation, if a specification fails to subtype-check19 then there’s
definitely a problem with it, if subtype-checking succeeds then there could be a hidden
problem with it. It’s like testing: subtype-checking in this context can only show the
presence of errors.

PVS is also a logic of total functions, but the ability to make a first-class type of non-
zero reals means that if inv is declared to have type R 6=0 → R 6=0 then the type-system can

18After all, it is a theorem!
19with sufficiently generous search bounds

B.4. PREDICATE SET PROVER AND APPLICATIONS 127

stop the function from being ‘lifted’ to a larger type. Essentially the PVS logic implements
a logic of partial functions, but by insisting that a type is available for every function’s
domain can avoid awkward questions of definedness.

B.4 Predicate Set Prover and Applications

B.4.1 Predicate Set Prover

An obvious application for the subtype derivation algorithm is to prove set membership
goals. Supposing the current goal is t ∈ P , we can derive a set S of subtype theorems for
t, and then invoke the higher-order prover once again with the top-level context and the
set S to tackle the goal directly. We package up this proof procedure into a HOL tactic
called the predicate set prover.

Example: To illustrate the two steps of the predicate set prover, consider the goal
3 ∈ nzreal.20 Subtypes are derived for the term 3 (of type R), and the following set of
subtype theorems are returned:

{` 3 ∈ K posreal 3, ` 3 ∈ K nnegreal 3}

(where K = λx. λ y. x). Next these two theorems are passed to the higher-order prover
along with the top-level logical context containing type-judgements, and it quickly proves
the goal ` 3 ∈ nzreal. 2

We can prove some interesting goals with the predicate set prover:

` map inv (cons (−1) (map sqrt [3, 1])) ∈ list nzreal

` (λx ∈ negreal. funpow inv n x) ∈ negreal
·→ negreal

One optimization that is effective with this tactic is to maintain a cache of the subtypes
that have already been derived for HOL constants.21 For example, the innocuous-looking
term ‘3’ used in the above example is actually composed of 4 nested function applications!
Re-deriving subtypes for constants is unnecessary and inefficient.

Another optimization arises naturally from certain subtype rules, such as the conjunc-
tion rule (B.20), repeated here:

∀ a, b. (b⇒ a ∈ UB) ∧ (a⇒ b ∈ UB)⇒ (a ∧ b) ∈ UB

The set UB is the universe set UB of booleans, so we can immediately prove ` b⇒ a ∈ UB
and ` a ⇒ b ∈ UB without recursing into the structure of the subterms a and b. Note
that if we were deriving subtypes in order to check the term for subtype correctness then
we would be obliged to carry out this recursion step to check a and b, but if our goal is
proving set membership then we can safely skip this.

20This is not quite as trivial as it looks, since the real number ‘3’ in HOL is really the complex term
real of num (numeral (bit1 (bit1 0))).

21Here ‘constant’ means any term having no free variables.

128 APPENDIX B. PREDICATE SET PROVER

The predicate set prover allows us to gain much of the proving benefit that PVS pred-
icate subtyping provides,22 and in some ways it does even better: the subtype derivation
algorithm is not restricted to calculating with principal subtypes, but rather with any
subtype that the term can be shown to satisfy using the derivation rules.

B.4.2 Proving Conditions During Rewriting

We can use the predicate set prover as a condition prover in a contextual rewriter, and
there are several reasons why it is useful to integrate these tools:

• There is a trend to incorporate tools into contextual rewriters because of the au-
tomatic subterm traversal and context accumulation. The logical context built up
by the contextual rewriter is easily transferred to the predicate set prover, and the
subterm traversal allows us to attempt a proof of all occurrences of t ∈ P in the
goal term.23

• Many rewrites have side conditions that can be expressed very naturally using re-
stricted quantifiers, and these generate goals for the predicate set prover when the
rewrite is applied.

• Subtype judgements, rules and constants can be stored with the simplification set
of a theory, thus reducing the administration burden of theory-specific rules.

Here are some miscellaneous rewrite rules that make use of subtype conditions:

` ∀x ∈ nzreal. x/x = 1 (B.40)

` ∀n. ∀m ∈ lenum n. m+ (n−m) = n (B.41)

` ∀n ∈ nznum. n mod n = 0 (B.42)

` ∀ s ∈ finite. ∀ f ∈ injection s. |image f s| = |s| (B.43)

` ∀G ∈ group. ∀ g ∈ set G. idG ∗G g = g (B.44)

` ∀G ∈ group. ∀ g, h ∈ set G. (g ∗G h = h) = (g = idG) (B.45)

Using rule (B.40), a term like 5/5 = 3/3 is straightforwardly rewritten to >. The last
two examples come from a body of computational number theory that we formalized to
verify the Miller-Rabin probabilistic primality test (Chapter 5).

An effective optimization for this tool is to make adding assumptions into the subtype
logical context a lazy operation. This delays their conversion to combinatory form and
CNF normalization until the predicate set prover is invoked on a goal, which might not
happen at all.

In theory, the architecture laid out in this chapter can establish much more exotic
properties than these, but the predicate subtype prover was found to be most useful

22Although almost certainly the performance using our model is worse than implementing predicate
subtyping as part of the logic: keeping subtypes with the terms so they never have to be re-derived
must provide a boost. We also experimented with this kind of architecture, but eventually dropped it to
simplify the design and increase interoperability with existing tools.

23When subtype derivation is applied to a subterm it accumulates context in much the same way
as a contextual rewriter. However, despite this similarity, the two tools are orthogonal and are best
implemented separately: we tried both approaches.

B.5. CONCLUDING REMARKS 129

and robust on these relatively simple properties that come up again and again during
conditional rewriting. These properties naturally propagate upwards through a term,
being preserved by most of the basic operations, and in such situations the predicate set
prover can be relied upon to show the desired condition (albeit sometimes rather slowly).
This tool lent itself to more efficient development of the required theories, particularly
the group theory where almost every theorem has one or more group membership side-
conditions. Our evaluation is that it is a useful tool for reasoning about term properties
that naturally propagate up terms.

B.5 Concluding Remarks

We have demonstrated that predicate subtyping can be simulated in HOL using predicate
sets, and presented a new automatic proof procedure that takes advantage of this new
style of reasoning. This proved to be an effective proof tool on a case study of formalized
computational number theory.

A comparison of HOL and PVS was made by Gordon (1996) from the perspectives of
logic, automatic proof and usability. The model of predicate subtyping using predicate
sets builds upon HOL88 restricted quantifier library of Wong (1993), and the exact details
of the predicate subtyping in our model attempts to follow the PVS architecture. For the
full details of the semantics and implementation of subtyping in PVS, refer to Owre and
Shankar (1997).

Previous work in this area has been done by Jones (1997), who built a tool in HOL to
specify the subtype of constants and subtype check terms with respect to the subtypes.
Given a term t, the tool sets up HOL goals that, if proved, would correspond to the
term being subtype-correct. The user is then free to use these extra theorems during
verification. Our model extends Jones’ by the introduction of subtype rules for generating
type-correctness conditions, the higher-order prover to automatically prove conditions,
and the integration of the tool into a rewriter to aid interactive proof.

ACL2 uses guards (Kaufmann and Moore, 1997) to stop functions from being applied
outside their domain; these generate proof obligations when new functions are defined
in terms of guarded functions. When the proof obligations have been satisfied the new
function is given a ‘gold’ status, and can be safely executed without causing run-time type
errors. This is very similar to the way PVS type-checks terms before admitting them into
the system.

A system of guard formulas in Z/EVES has also been implemented by Saaltink (1997);
similarly to our work these guards are used to aid formal Z proofs and find errors in
Z specifications. The Z logic allows terms to be ‘undefined’, but the system of guard
formulas imposed will flag the situations that can result in undefinedness, allowing classical
reasoning on the partial logic. Since Z is based on set theory, this use of guards does not
suffer from the logical limitations we outlined in Section B.3.2, and can provide strong
guarantees about a checked specification. However, whereas our subtype rules propagate
all available logical information around the term, Saaltink chooses a “left-to-right system
of interpretation” that is not complete, but works well in most practical situations and
simplifies guard conditions.

There has also been a huge amount of work on subtyping and polymorphism in various
λ-calculi, used to model object-oriented programming languages. Some concepts from this

130 APPENDIX B. PREDICATE SET PROVER

field are related to our work, in particular the notion of intersection types corresponds to
finding multiple subtypes of a term. The thesis of Compagnoni (1995) provides a good
introduction to this area.

Since we now have a preliminary evaluation of the predicate subtype prover, we must
decide the direction in which to advance it. On the one hand it may be possible to widen
its effective scope by including rules for building up more complicated predicate sets, or
on the other hand it may be most useful to speed up the performance and make it more
robust on the scope we have identified here. The path we take may depend on how far
we can push the underlying higher-order prover.

Another interesting extension to this research would be to use subtype checking to
perform subtype inference of new constants. This would be extremely useful: currently
for each constant which we would like to add to the constant subtype dictionary, we must
prove a result of the form of theorems (B.24)–(B.30). One way to approach this task
would be to initially set the type of the new constant c to be c ∈ P where P is a variable;
during subtype checking collect constraints on P ; and finally at the top-level try to solve
these constraints: the solutions being subtypes for c.

Appendix C

The HOL Probability Theories
(Abridged)

C.1 measure Theory

[additive_def]
|- !m.

additive m =
!s t.
s IN measurable_sets m /\ t IN measurable_sets m /\
DISJOINT s t ==>
(measure m (s UNION t) = measure m s + measure m t)

[algebra_def]
|- !a.

algebra a =
{} IN a /\ (!s. s IN a ==> COMPL s IN a) /\
!s t. s IN a /\ t IN a ==> s UNION t IN a

[countably_additive_def]
|- !m.

countably_additive m =
!f.
f IN (UNIV -> measurable_sets m) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\
BIGUNION (IMAGE f UNIV) IN measurable_sets m ==>
measure m o f sums measure m (BIGUNION (IMAGE f UNIV))

[countably_subadditive_def]
|- !m.

countably_subadditive m =
!f.
f IN (UNIV -> measurable_sets m) /\
BIGUNION (IMAGE f UNIV) IN measurable_sets m /\
summable (measure m o f) ==>
measure m (BIGUNION (IMAGE f UNIV)) <= suminf (measure m o f)

[increasing_def]
|- !m.

131

132 APPENDIX C. THE HOL PROBABILITY THEORIES

increasing m =
!s t.
s IN measurable_sets m /\ t IN measurable_sets m /\
s SUBSET t ==>
measure m s <= measure m t

[inf_measure_def]
|- !m s.

inf_measure m s =
inf
{r
|
?f.

f IN (UNIV -> measurable_sets m) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\
s SUBSET BIGUNION (IMAGE f UNIV) /\ measure m o f sums r}

[lambda_system_def]
|- !g0 lam.

lambda_system g0 lam =
{l
|
l IN g0 /\
!g. g IN g0 ==> (lam (l INTER g) + lam (COMPL l INTER g) = lam g)}

[measurable_def]
|- !a b. measurable a b = {f | !s. s IN b ==> PREIMAGE f s IN a}

[measurable_sets_def]
|- !a mu. measurable_sets (a,mu) = a

[measure_def]
!a mu. measure (a,mu) = mu

[measure_preserving_def]
|- !m1 m2.

measure_preserving m1 m2 =
{f
|
f IN measurable (measurable_sets m1) (measurable_sets m2) /\
!s.

s IN measurable_sets m2 ==>
(measure m1 (PREIMAGE f s) = measure m2 s)}

[measure_space_def]
|- !m.

measure_space m =
sigma_algebra (measurable_sets m) /\ positive m /\
countably_additive m

[outer_measure_space_def]
|- !m.

outer_measure_space m =
positive m /\ increasing m /\ countably_subadditive m

[positive_def]

C.1. MEASURE THEORY 133

|- !m.
positive m =
(measure m {} = 0) /\
!s. s IN measurable_sets m ==> 0 <= measure m s

[sigma_algebra_def]
|- !a.

sigma_algebra a =
algebra a /\ !c. countable c /\ c SUBSET a ==> BIGUNION c IN a

[sigma_def]
|- !b. sigma b = BIGINTER {a | b SUBSET a /\ sigma_algebra a}

[subadditive_def]
|- !m.

subadditive m =
!s t.
s IN measurable_sets m /\ t IN measurable_sets m ==>
measure m (s UNION t) <= measure m s + measure m t

[ADDITIVE_INCREASING]
|- !m.

algebra (measurable_sets m) /\ positive m /\ additive m ==>
increasing m

[ALGEBRA_COMPL]
|- !a s. algebra a /\ s IN a ==> COMPL s IN a

[ALGEBRA_DIFF]
|- !a s t. algebra a /\ s IN a /\ t IN a ==> s DIFF t IN a

[ALGEBRA_EMPTY]
|- !a. algebra a ==> {} IN a

[ALGEBRA_FINITE_UNION]
|- !a c. algebra a /\ FINITE c /\ c SUBSET a ==> BIGUNION c IN a

[ALGEBRA_INTER]
|- !a s t. algebra a /\ s IN a /\ t IN a ==> s INTER t IN a

[ALGEBRA_SUBSET_LAMBDA_SYSTEM]
|- !m.

algebra (measurable_sets m) /\ positive m /\ increasing m /\
additive m ==>
measurable_sets m SUBSET lambda_system UNIV (inf_measure m)

[ALGEBRA_UNION]
|- !a s t. algebra a /\ s IN a /\ t IN a ==> s UNION t IN a

[ALGEBRA_UNIV]
|- !a. algebra a ==> UNIV IN a

[CARATHEODORY]
|- !m0.

algebra (measurable_sets m0) /\ positive m0 /\
countably_additive m0 ==>

134 APPENDIX C. THE HOL PROBABILITY THEORIES

?m.
(!s. s IN measurable_sets m0 ==> (measure m s = measure m0 s)) /\
(measurable_sets m = sigma (measurable_sets m0)) /\
measure_space m

[CARATHEODORY_LEMMA]
|- !gsig lam.

sigma_algebra gsig /\ outer_measure_space (gsig,lam) ==>
measure_space (lambda_system gsig lam,lam)

[COUNTABLY_ADDITIVE_ADDITIVE]
|- !m.

algebra (measurable_sets m) /\ positive m /\
countably_additive m ==>
additive m

[COUNTABLY_SUBADDITIVE_SUBADDITIVE]
|- !m.

algebra (measurable_sets m) /\ positive m /\
countably_subadditive m ==>
subadditive m

[INCREASING_ADDITIVE_SUMMABLE]
|- !m f.

algebra (measurable_sets m) /\ positive m /\ increasing m /\
additive m /\ f IN (UNIV -> measurable_sets m) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>
summable (measure m o f)

[INF_MEASURE_AGREES]
|- !m s.

algebra (measurable_sets m) /\ positive m /\
countably_additive m /\ s IN measurable_sets m ==>
(inf_measure m s = measure m s)

[INF_MEASURE_OUTER]
|- !m.

algebra (measurable_sets m) /\ positive m /\ increasing m ==>
outer_measure_space (UNIV,inf_measure m)

[IN_SIGMA]
|- !a x. x IN a ==> x IN sigma a

[LAMBDA_SYSTEM_ADDITIVE]
|- !g0 lam l1 l2.

algebra g0 /\ positive (g0,lam) ==>
additive (lambda_system g0 lam,lam)

[LAMBDA_SYSTEM_ALGEBRA]
|- !g0 lam.

algebra g0 /\ positive (g0,lam) ==> algebra (lambda_system g0 lam)

[LAMBDA_SYSTEM_CARATHEODORY]
|- !gsig lam.

sigma_algebra gsig /\ outer_measure_space (gsig,lam) ==>
!f.

C.1. MEASURE THEORY 135

f IN (UNIV -> lambda_system gsig lam) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>
BIGUNION (IMAGE f UNIV) IN lambda_system gsig lam /\
lam o f sums lam (BIGUNION (IMAGE f UNIV))

[LAMBDA_SYSTEM_INCREASING]
|- !g0 lam.

increasing (g0,lam) ==> increasing (lambda_system g0 lam,lam)

[LAMBDA_SYSTEM_POSITIVE]
|- !g0 lam. positive (g0,lam) ==> positive (lambda_system g0 lam,lam)

[MEASURABLE_COMP]
|- !f g a b c.

f IN measurable a b /\ g IN measurable b c ==>
g o f IN measurable a c

[MEASURABLE_I]
|- !a. I IN measurable a a

[MEASURABLE_LIFT]
|- !f a b.

sigma_algebra a /\ f IN measurable a b ==>
f IN measurable a (sigma b)

[MEASURABLE_PROD_SIGMA]
|- !a a1 a2 f.

sigma_algebra a /\ FST o f IN measurable a a1 /\
SND o f IN measurable a a2 ==>
f IN measurable a (sigma (prod_sets a1 a2))

[MEASURABLE_UP_LIFT]
|- !a b c f. f IN measurable a c /\ a SUBSET b ==> f IN measurable b c

[MEASURE_PRESERVING_LIFT]
|- !m1 m2 a f.

measure_space m1 /\ measure_space m2 /\ algebra a /\
(measurable_sets m2 = sigma a) /\
f IN measure_preserving m1 (a,measure m2) ==>
f IN measure_preserving m1 m2

[MEASURE_PRESERVING_UP_LIFT]
|- !m1 m2 f.

f IN measure_preserving (a,measure m1) m2 /\
a SUBSET measurable_sets m1 ==>
f IN measure_preserving m1 m2

[MEASURE_SPACE_REDUCE]
|- !m. (measurable_sets m,measure m) = m

[MONOTONE_CONVERGENCE]
|- !m s f.

measure_space m /\ f IN (UNIV -> measurable_sets m) /\
(!n. f n SUBSET f (SUC n)) /\ (s = BIGUNION (IMAGE f UNIV)) ==>
measure m o f --> measure m s

136 APPENDIX C. THE HOL PROBABILITY THEORIES

[SIGMA_ALGEBRA]
|- !p.

sigma_algebra p =
{} IN p /\ (!s. s IN p ==> COMPL s IN p) /\
!c. countable c /\ c SUBSET p ==> BIGUNION c IN p

[SIGMA_ALGEBRA_SIGMA]
|- !b. sigma_algebra (sigma b)

[SIGMA_PROPERTY]
|- !p a.

{} IN p /\ a SUBSET p /\
(!s. s IN p INTER sigma a ==> COMPL s IN p) /\
(!c.

countable c /\ c SUBSET p INTER sigma a ==> BIGUNION c IN p) ==>
sigma a SUBSET p

[SIGMA_PROPERTY_DISJOINT]
|- !p a.

algebra a /\ a SUBSET p /\
(!s. s IN p INTER sigma a ==> COMPL s IN p) /\
(!f.

f IN (UNIV -> p INTER sigma a) /\ (f 0 = {}) /\
(!n. f n SUBSET f (SUC n)) ==>
BIGUNION (IMAGE f UNIV) IN p) /\

(!f.
f IN (UNIV -> p INTER sigma a) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) ==>
BIGUNION (IMAGE f UNIV) IN p) ==>

sigma a SUBSET p

[UNIV_SIGMA_ALGEBRA]
|- sigma_algebra UNIV

C.2 probability Theory

[events_def]
|- events = measurable_sets

[indep_def]
|- !p a b.

indep p a b =
a IN events p /\ b IN events p /\
(prob p (a INTER b) = prob p a * prob p b)

[indep_families_def]
|- !p q r. indep_families p q r = !s t. s IN q /\ t IN r ==> indep p s t

[indep_function_def]
|- !p.

indep_function p =
{f |

C.2. PROBABILITY THEORY 137

indep_families p (IMAGE (PREIMAGE (FST o f)) UNIV)
(IMAGE (PREIMAGE (SND o f)) (events p))}

[possibly_def]
|- !p e. possibly p e = e IN events p /\ ~(prob p e = 0)

[prob_def]
|- prob = measure

[prob_preserving_def]
|- prob_preserving = measure_preserving

[prob_space_def]
|- !p. prob_space p = measure_space p /\ (measure p UNIV = 1)

[probably_def]
|- !p e. probably p e = e IN events p /\ (prob p e = 1)

[EVENTS]
|- !a b. events (a,b) = a

[EVENTS_SIGMA_ALGEBRA]
|- !p. prob_space p ==> sigma_algebra (events p)

[INDEP_EMPTY]
|- !p s. prob_space p /\ s IN events p ==> indep p {} s

[INDEP_REFL]
|- !p a.

prob_space p /\ a IN events p ==>
(indep p a a = (prob p a = 0) \/ (prob p a = 1))

[INDEP_SYM]
|- !p a b. prob_space p /\ indep p a b ==> indep p b a

[INDEP_UNIV]
|- !p s. prob_space p /\ s IN events p ==> indep p UNIV s

[PROB]
|- !a b. prob (a,b) = b

[PROB_ADDITIVE]
|- !p s t u.

prob_space p /\ s IN events p /\ t IN events p /\ DISJOINT s t /\
(u = s UNION t) ==>
(prob p u = prob p s + prob p t)

[PROB_COMPL]
|- !p s.

prob_space p /\ s IN events p ==> (prob p (COMPL s) = 1 - prob p s)

[PROB_COUNTABLY_ADDITIVE]
|- !p s f.

prob_space p /\ f IN (UNIV -> events p) /\
(!m n. ~(m = n) ==> DISJOINT (f m) (f n)) /\
(s = BIGUNION (IMAGE f UNIV)) ==>

138 APPENDIX C. THE HOL PROBABILITY THEORIES

prob p o f sums prob p s

[PROB_EMPTY]
|- !p. prob_space p ==> (prob p {} = 0)

[PROB_FINITELY_ADDITIVE]
|- !p s f n.

prob_space p /\ f IN (count n -> events p) /\
(!a b. a < n /\ b < n /\ ~(a = b) ==> DISJOINT (f a) (f b)) /\
(s = BIGUNION (IMAGE f (count n))) ==>
(sum (0,n) (prob p o f) = prob p s)

[PROB_INCREASING]
|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\ s SUBSET t ==>
prob p s <= prob p t

[PROB_INCREASING_UNION]
|- !p s f.

prob_space p /\ f IN (UNIV -> events p) /\
(!n. f n SUBSET f (SUC n)) /\ (s = BIGUNION (IMAGE f UNIV)) ==>
prob p o f --> prob p s

[PROB_LE_1]
|- !p s. prob_space p /\ s IN events p ==> prob p s <= 1

[PROB_ONE_INTER]
|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\
(prob p t = 1) ==>
(prob p (s INTER t) = prob p s)

[PROB_POSITIVE]
|- !p s. prob_space p /\ s IN events p ==> 0 <= prob p s

[PROB_PRESERVING]
|- !p1 p2.

prob_preserving p1 p2 =
{f |
f IN measurable (events p1) (events p2) /\
!s. s IN events p2 ==> (prob p1 (PREIMAGE f s) = prob p2 s)}

[PROB_PRESERVING_LIFT]
|- !p1 p2 a f.

prob_space p1 /\ prob_space p2 /\ algebra a /\
(events p2 = sigma a) /\ f IN prob_preserving p1 (a,prob p2) ==>
f IN prob_preserving p1 p2

[PROB_PRESERVING_UP_LIFT]
|- !p1 p2 f.

f IN prob_preserving (a,prob p1) p2 /\ a SUBSET events p1 ==>
f IN prob_preserving p1 p2

[PROB_SPACE]
|- !p.

prob_space p =

C.3. PROB DICE THEORY 139

sigma_algebra (events p) /\ positive p /\ countably_additive p /\
(prob p UNIV = 1)

[PROB_ZERO_UNION]
|- !p s t.

prob_space p /\ s IN events p /\ t IN events p /\
(prob p t = 0) ==>
(prob p (s UNION t) = prob p s)

C.3 prob dice Theory

[dice_def]
|- dice =

coin_flip
(prob_repeat
(coin_flip
(coin_flip
(UNIT NONE)
(UNIT (SOME 1)))
(MMAP SOME
(coin_flip
(UNIT 2)
(UNIT 3)))))

(prob_repeat
(coin_flip
(MMAP SOME
(coin_flip
(UNIT 4)
(UNIT 5)))

(coin_flip
(UNIT (SOME 6))
(UNIT NONE))))

[optimal_two_dice_def]
|- optimal_two_dice =

coin_flip
(prob_repeat
(coin_flip
(coin_flip
(coin_flip
(coin_flip
(coin_flip
(UNIT (SOME 2))
(coin_flip
(UNIT NONE)
(UNIT (SOME 2))))

(UNIT (SOME 3)))
(UNIT (SOME 4)))
(UNIT (SOME 6)))
(MMAP SOME
(coin_flip
(coin_flip

140 APPENDIX C. THE HOL PROBABILITY THEORIES

(coin_flip
(coin_flip
(UNIT 3)
(coin_flip
(coin_flip
(UNIT 2)
(UNIT 4))
(UNIT 3)))

(UNIT 5))
(UNIT 5))
(UNIT 7)))))

(prob_repeat
(coin_flip
(MMAP SOME
(coin_flip
(coin_flip
(coin_flip
(coin_flip
(UNIT 4)
(coin_flip
(UNIT 6)
(coin_flip
(UNIT 6)
(UNIT 8))))

(UNIT 7))
(UNIT 9))
(UNIT 8)))

(coin_flip
(MMAP SOME
(coin_flip
(coin_flip
(coin_flip
(UNIT 5)
(UNIT 9))

(UNIT 9))
(UNIT 10)))

(coin_flip
(MMAP SOME
(coin_flip
(coin_flip
(coin_flip
(UNIT 7)
(UNIT 8))
(UNIT 10))

(UNIT 11)))
(coin_flip
(MMAP SOME
(coin_flip
(coin_flip
(coin_flip
(UNIT 10)
(UNIT 12))
(UNIT 11))
(UNIT 11)))

(coin_flip
(coin_flip

C.3. PROB DICE THEORY 141

(UNIT (SOME 12))
(UNIT NONE))

(UNIT (SOME 12))))))))

[two_dice_def]
|- two_dice = BIND dice (\a. BIND dice (\b. UNIT (a + b)))

[INDEP_FN_DICE]
|- dice IN indep_fn

[INDEP_FN_OPTIMAL_TWO_DICE]
|- optimal_two_dice IN indep_fn

[INDEP_FN_TWO_DICE]
|- two_dice IN indep_fn

[OPTIMAL_TWO_DICE_CORRECT]
|- !n.

prob bern {s | FST (optimal_two_dice s) = n} =
prob bern {s | FST (two_dice s) = n}

[PROB_BERN_DICE]
|- !n.

prob bern {s | FST (dice s) = n} =
(if 1 <= n /\ n <= 6 then 1 / 6 else 0)

[PROB_BERN_TWO_DICE]
|- !n.

prob bern {s | FST (two_dice s) = n} =
(if (n = 2) \/ (n = 12) then 1 / 36
else if (n = 3) \/ (n = 11) then 2 / 36
else if (n = 4) \/ (n = 10) then 3 / 36
else if (n = 5) \/ (n = 9) then 4 / 36
else if (n = 6) \/ (n = 8) then 5 / 36
else if n = 7 then 6 / 36
else 0)

142 APPENDIX C. THE HOL PROBABILITY THEORIES

Appendix D

Miller-Rabin Primality Test
Extracted to Standard ML

D.1 HOL miller rabin ml Theory

[BIND_ML]
|- !f g. BIND f g = UNCURRY g o f

[EVEN_ML]
|- !n. EVEN n = (n MOD 2 = 0)

[FACTOR_TWOS_ML]
|- factor_twos n =

(if 0 < n /\ EVEN n then
(let (r,s) = factor_twos (n DIV 2) in (SUC r,s))

else
(0,n))

[LOG2_ML]
|- !n. log2 n = (if n = 0 then 0 else SUC (log2 (n DIV 2)))

[MANY_ML]
|- !f n.

MANY f n =
(if n = 0 then

UNIT T
else
BIND f (\x. (if x then MANY f (n - 1) else UNIT F)))

[MILLER_RABIN_1_ML]
|- !n.

miller_rabin_1 n =
(if n = 2 then

UNIT T
else
(if (n = 1) \/ EVEN n then

UNIT F
else
BIND (prob_uniform_cut (2 * log2 (n - 1)) (n - 2))

143

144 APPENDIX D. MILLER-RABIN PRIMALITY TEST IN ML

(\a. ~witness n (a + 2))))

[MILLER_RABIN_ML]
|- !n t. miller_rabin n t = MANY (miller_rabin_1 n) t

[MODEXP_ML]
|- modexp n a b =

(if b = 0 then
1

else
(let r = modexp n a (b DIV 2) in

let r2 = (r * r) MOD n in
(if EVEN b then r2 else (r2 * a) MOD n)))

[ODD_ML]
|- ODD = $~ o EVEN

[PROB_UNIFORM_CUT_ML]
|- !t n.

prob_uniform_cut t n =
(if n = 0 then

prob_uniform_cut t n
else
(if t = 0 then

UNIT 0
else
BIND (prob_unif (n - 1))
(\m. if m < n then UNIT m else prob_uniform_cut (t - 1) n)))

[PROB_UNIF_ML]
|- !n.

prob_unif n =
(if n = 0 then

UNIT 0
else
BIND (prob_unif (n DIV 2))
(\m. BIND sdest (\b. if b then 2 * m + 1 else 2 * m)))

[UNCURRY_ML]
|- !f x y. UNCURRY f (x,y) = f x y

[UNIT_ML]
|- !x. UNIT x = (\s. (x,s))

[WITNESS_ML]
|- !n a.

witness n a =
(let (r,s) = factor_twos (n - 1) in

witness_tail n (modexp n a s) r)

[WITNESS_TAIL_ML]
|- !n a r.

witness_tail n a r =
(if r = 0 then

~(a = 1)
else

D.2. ML SUPPORT MODULES 145

(let a2 = (a * a) MOD n in
(if a2 = 1 then

~(a = 1) /\ ~(a = n - 1)
else
witness_tail n a2 (r - 1))))

D.2 ML Support Modules

D.2.1 HolStream Signature

signature HolStream =
sig
type ’a stream = ’a Stream.stream

val shd : ’a stream -> ’a
val stl : ’a stream -> ’a stream
val sdest : ’a stream -> ’a * ’a stream

end

This module provides a HOL wrapper to a more comprehensive Stream module.

D.2.2 RandomBits Signature

signature RandomBits =
sig
val random : unit -> bool Stream.stream
val urandom : unit -> bool Stream.stream

end

In this module, the values random and urandom provide an interface to the Linux devices
/dev/random and /dev/urandom.

D.2.3 HolNum Signature

signature HolNum =
sig
type num

val num_to_bits : num -> bool list
val bits_to_num : bool list -> num

val Num : string -> num
val num_to_string : num -> string
val pp_num : ppstream -> num -> unit

val ZERO : num
val ONE : num

146 APPENDIX D. MILLER-RABIN PRIMALITY TEST IN ML

val TWO : num

val SUC : num -> num
val ++ : num * num -> num
val -- : num * num -> num
val ** : num * num -> num
val DIV : num * num -> num
val MOD : num * num -> num

val == : num * num -> bool
val <<= : num * num -> bool
val >>= : num * num -> bool
val << : num * num -> bool
val >> : num * num -> bool

end

This module provides support for a type num of arbitrarily large natural numbers.

D.3 ML Miller-Rabin

D.3.1 HolMiller.sml Structure

structure HolMiller :> HolMiller =
struct

open HolNum HolStream;

infix 7 ** MOD DIV;
infix 6 ++ --;
infix 4 == <<= << >>= >>;

(* pair *)

fun UNCURRY f (x, y) = f x y;

(* state_transformer *)

fun UNIT x = fn s => (x, s);

fun BIND f g = UNCURRY g o f;

(* num *)

fun EVEN n = (n MOD TWO == ZERO);

val ODD = not o EVEN;

(* prob *)

fun MANY f n =
if n == ZERO then UNIT true
else BIND f (fn x => if x then MANY f (n -- ONE) else UNIT false);

D.3. ML MILLER-RABIN 147

(* prob_uniform *)

fun log2 n = if n == ZERO then ZERO else SUC (log2 (n DIV TWO));

fun prob_unif n =
if n == ZERO then UNIT ZERO
else
BIND (prob_unif (n DIV TWO)) (fn m =>
BIND S.dest (fn b =>
if b then TWO ** m ++ ONE else TWO ** m));

fun prob_uniform_cut t n =
if n == ZERO then raise Fail "prob_uniform_cut: out of domain"
else if t == ZERO then UNIT ZERO
else
BIND (prob_unif (n -- ONE))
(fn m => if m << n then UNIT m else prob_uniform_cut (t -- ONE) n);

(* miller_rabin *)

fun factor_twos n =
if ZERO << n andalso EVEN n then
let val (r, s) = factor_twos (n DIV TWO)
in (SUC r, s)
end

else (ZERO, n);

fun modexp n a b =
if b == ZERO then ONE
else
let
val r = modexp n a (b DIV TWO)
val r2 = (r ** r) MOD n

in
if EVEN b then r2 else (r2 ** a) MOD n

end;

fun witness_tail n a r =
if r == ZERO then not (a == ONE)
else
let
val a2 = (a ** a) MOD n

in
if a2 == ONE then not (a == ONE) andalso not (a == n -- ONE)
else witness_tail n a2 (r -- ONE)

end;

fun witness n a =
let val (r, s) = factor_twos (n -- ONE)
in witness_tail n (modexp n a s) r
end;

fun miller_rabin_1 n =
if n == TWO then UNIT true,
else if n == ONE orelse EVEN n then UNIT false

148 APPENDIX D. MILLER-RABIN PRIMALITY TEST IN ML

else
BIND (prob_uniform_cut (TWO ** log2 (n -- ONE)) (n -- TWO))
(fn a => not (witness n (a ++ TWO)));

fun miller_rabin n t = MANY (miller_rabin_1 n) t;

end;

Bibliography

Mark Aagaard and John Harrison, editors. Theorem Proving in Higher Order Logics, 13th
International Conference: TPHOLs 2000, volume 1869 of Lecture Notes in Computer
Science, Portland, OR, USA, August 2000. Springer.

Martin Abadi and Joseph Y. Halpern. Decidability and expressiveness for first-order logics
of probability. Information and Computation, 1994.

Anonymous. The QED manifesto. In Bundy (1994).

Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University
Press, 1984.

Paul H. Bardell, W. H. McAnney, and J. Savir. Built In Test for VLSI: Pseudorandom
Techniques. John Wiley, October 1987. URL http://www.wiley.com/Corporate/

Website/Objects/Products/0,9049,65654,00%.html.

Bruno Barras. Programming and computing in HOL. In Aagaard and Harrison (2000),
pages 17–37.

E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comput., 24, 1970.

Józef Bia las. The σ-additive measure theory. Journal of Formalized Mathematics, 1990.
URL http://mizar.uwb.edu.pl/JFM/Vol2/measure1.html.

Józef Bia las. Properties of Caratheodor’s measure. Journal of Formalized Mathematics,
1992. URL http://mizar.uwb.edu.pl/JFM/Vol4/measure4.html.

P. Billingsley. Probability and Measure. John Wiley & Sons, Inc., New York, 2nd edition,
1986.

George Boole. The Mathematical Analysis of Logic, Being an Essay Toward a Calculus
of Deductive Reasoning. Macmillan, Cambridge, 1847.

Robert S. Boyer, N. G. de Bruijn, Gérard Huet, and Andrzej Trybulec. A mechanically
proof-checked encyclopedia of mathematics: Should we build one? can we? In Bundy
(1994), pages 237–251.

Robert S. Boyer and J Strother Moore. Proof checking the RSA public key encryption
algorithm. American Mathematical Monthly, 91(3):181–189, 1984. URL http://www.

cs.utexas.edu/users/boyer/rsa.ps.Z.

149

150 BIBLIOGRAPHY

G. Buffon. Essai d’arithmétique morale. Supplément à l’Histoire Naturelle, 4, 1777.

Alan Bundy, editor. 12th International Conference on Automated Deduction (CADE-
12), volume 814 of Lecture Notes in Artificial Intelligence, Nancy, France, June 1994.
Springer.

Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, February 1990. URL http://www.acm.

org/pubs/articles/journals/tocs/1990-8-1/p18-burrows/p18%-burrows.pdf.

O. Caprotti and M. Oostdijk. Formal and efficient primality proofs by use of computer
algebra oracles. Journal of Symbolic Computation, 32(1–2):55–70, 2001. Special Issue
on Computer Algebra and Mechanized Reasoning.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

Bob Colwell and Bob Brennan. Intel’s formal verification experience on the Willamette
development. In Aagaard and Harrison (2000), pages 106–107.

Adriana B. Compagnoni. Higher-Order Subtyping with Intersection Types. PhD thesis,
Catholic University, Nigmegen, January 1995.

Thomas H. Cormen, Charles Eric Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press/McGraw-Hill, Cambridge, Massachusetts, 1990.

Paul Curzon. The formal verification of the Fairisle ATM switching element: an overview.
Technical Report 328, University of Cambridge Computer Laboratory, March 1994.

N. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its
extensions. In Symposium on Automatic Demonstration, pages 29–61. Lecture Notes in
Mathematics, 125, Springer, 1970.

K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilistic
machines. In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 183–
212. Princeton University Press, Princeton, NJ, 1955.

Morris DeGroot. Probability and Statistics. Addison-Wesley, 2nd edition, 1989.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

Euclid. Elements, 300B.C. URL http://www-groups.dcs.st-andrews.ac.uk/

~history/Mathematicians/Euclid.h%tml.

V. A. Feldman and D. Harel. A probabilistic dynamic logic. Journal of Computer and
System Sciences, 28(2):193–215, 1984.

George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer, 1996.

J. D. Fleuriot. A Combination of Geometry Theorem Proving and Nonstandard Analysis,
with Application to Newton’s Principia. Distinguished Dissertations. Springer, 2001.

BIBLIOGRAPHY 151

J. T. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675–695, December 1977.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

Charles M. Goldie and Richard G. E. Pinch. Communication theory, volume 20 of LMS
Student Texts. Cambridge University Press, 1991.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes
in Computer Science. Springer, 1979.

M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In G. M.
Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification and Syn-
thesis, pages 73–128. Kluwer Academic Publishers, Boston, 1988.

M. J. C. Gordon. Notes on PVS from a HOL perspective. URL http://www.cl.cam.ac.

uk/~mjcg/PVS.html. Available from the author’s web page, 1996.

M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving environment
for higher order logic). Cambridge University Press, 1993.

Elsa Gunter. Doing algebra in simple type theory. Technical Report MS-CIS-89-38, Logic
& Computation 09, Department of Computer and Information Science, University of
Pennsylvania, 1989.

Joseph Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,
1990. URL http://www.cs.cornell.edu/home/halpern/abstract.html#journal25.

R. W. Hansell. Borel measurable mappings for nonseparable metric spaces. Transactions
of the American Mathematical Society, 161:145–169, November 1971. URL http://

uk.jstor.org/cgi-bin/jstor/listjournal/00029947/di970179.

G. H. Hardy. A Mathematician’s Apology, reprinted with a foreword by C. P. Snow.
Cambridge University Press, 1993.

John Harrison. Formalized mathematics. Technical Report 36, Turku Centre for Computer
Science (TUCS), Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland, 1996a. URL
http://www.cl.cam.ac.uk/users/jrh/papers/form-math3.html.

John Harrison. Optimizing proof search in model elimination. In Michael A. McRobbie
and John K. Slaney, editors, 13th International Conference on Automated Deduction
(CADE-13), volume 1104 of Lecture Notes in Artificial Intelligence, pages 313–327,
New Brunswick, NJ, USA, July 1996b. Springer. URL http://www.cl.cam.ac.uk/

users/jrh/papers/me.html.

John Harrison. Floating point verification in HOL light: the exponential function.
Technical Report 428, University of Cambridge Computer Laboratory, 1997. URL
http://www.cl.cam.ac.uk/users/jrh/papers/tang.html.

152 BIBLIOGRAPHY

John Harrison. Theorem Proving with the Real Numbers (Distinguished dissertations).
Springer, 1998.

Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination of probabilistic concurrent
programs. ACM Transactions on Programming Languages and Systems (TOPLAS), 5
(3):356–380, July 1983.

Jifeng He, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28(2–3):171–192, April 1997.

Ted Herman. Probabilistic self-stabilization. Information Processing Letters, 35(2):63–67,
June 1990.

Marieke Huisman. Reasoning about Java Programs in higher order logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, Holland, February 2001.

Joe Hurd. Lightweight probability theory for verification. In Mark Aagaard, John Har-
rison, and Tom Schubert, editors, TPHOLs 2000: Supplemental Proceedings, number
CSE-00-009 in Oregon Graduate Institute Technical Reports, pages 103–113, August
2000. URL http://www.cl.cam.ac.uk/~jeh1004/research/papers/probability.

html.

Joe Hurd. Predicate subtyping with predicate sets. In Richard J. Boulton and Paul B.
Jackson, editors, 14th International Conference on Theorem Proving in Higher Order
Logics: TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages 265–
280, Edinburgh, Scotland, September 2001a. Springer. URL http://www.cl.cam.ac.

uk/~jeh1004/research/papers/subtypes.html.

Joe Hurd. Verification of the Miller-Rabin probabilistic primality test. In Richard J.
Boulton and Paul B. Jackson, editors, TPHOLs 2001: Supplemental Proceedings, num-
ber EDI-INF-RR-0046 in University of Edinburgh Informatics Report Series, pages
223–238, September 2001b. URL http://www.cl.cam.ac.uk/~jeh1004/research/

papers/miller.html.

IEEE Standards Department. IEEE Standard for Verilog Hardware Description Language.
Number 1364-2001 in IEEE Standards. IEEE, 2001.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 9, pages
67–161. Elsevier and The MIT Press (co-publishers), 1990.

Claire Jones. Probabilistic Non-Determinism. PhD thesis, University of Edinburgh, 1990.
URL http://www.lfcs.informatics.ed.ac.uk/reports/90/ECS-LFCS-90-105/.

Michael D. Jones. Restricted types for HOL. In Elsa L. Gunter, editor, Supplemental
Proceedings of the 10th International Conference on Theorem Proving in Higher Order
Logics, TPHOLs ’97, Murray Hill, NJ, USA, August 1997. URL http://www.cs.utah.

edu/~mjones/my.papers.html.

BIBLIOGRAPHY 153

F. Kammüller and L. C. Paulson. A formal proof of Sylow’s first theorem – an experiment
in abstract algebra with Isabelle HOL. Journal of Automated Reasoning, 23(3-4):235–
264, 1999.

R. M. Karp. The probabilistic analysis of some combinatorial search algorithms. In Traub
(1976), pages 1–20.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors. Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000a.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, June 2000b.

Matt Kaufmann and J Strother Moore. An industrial strength theorem prover for a
logic based on Common Lisp. IEEE Transactions on Software Engineering, 23(4):
203–213, April 1997. URL http://www.cs.utexas.edu/users/moore/publications/

acl2-papers.html#Over%views.

H. J. Keisler. Probability quantifiers. In J. Barwise and S. Feferman, editors, Model-
Theoretic Logics, pages 509–556. Springer, New York, 1985.

Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, 1997. Third edition.

Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number
generation. In Traub (1976).

Andrei N. Kolmogorov. Foundations of the Theory of Probability. Chelsea, New York,
1950.

Dexter Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on Foun-
dations of Computer Science, pages 101–114, Long Beach, Ca., USA, October 1979.
IEEE Computer Society Press.

M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model
checker. In Proceedings of PAPM/PROBMIV 2001 Tools Session, September 2001.
URL http://www.cs.bham.ac.uk/~dxp/prism/papers/PROBMIV01Tool.ps.gz.

Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed?
ACM Transactions on Programming Languages and Systems, 21(3):502–526, May
1999. URL http://www.research.compaq.com/SRC/personal/lamport/pubs/pubs.

html#lamp%ort-types.

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In SIG-
PLAN Symposium on Programming Language Design and Implementation (PLDI’94),
Orlando, pages 24–35, June 1994.

Clarence Irving Lewis. A Survey of Symbolic Logic. Univ. of California Press, Berkeley,
Berkeley, 1918. Reprint of Chapters I–IV by Dover Publications, 1960, New York.

154 BIBLIOGRAPHY

Harry G. Mairson. Deciding ML typability is complete for deterministic exponential
time. In Conference Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 382–401. ACM SIGACT and SIGPLAN, ACM Press,
1990.

Gary L. Miller. Riemann’s hypothesis and tests for primality. In Conference Record of
Seventh Annual ACM Symposium on Theory of Computation, pages 234–239, Albu-
querque, New Mexico, May 1975.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, December 1978.

Abdel Mokkedem and Tim Leonard. Formal verification of the Alpha 21364 network
protocol. In Aagaard and Harrison (2000), pages 443–461.

David Monniaux. An abstract Monte-Carlo method for the analysis of probabilis-
tic programs (extended abstract). In 28th Symposium on Principles of Program-
ming Languages (POPL ’01). Association for Computer Machinery, 2001. URL
http://www.di.ens.fr/~monniaux/biblio/David_Monniaux.html.

Carroll Morgan. Proof rules for probabilistic loops. In Proceedings of the BCS-
FACS 7th Refinement Workshop, 1996. URL http://web.comlab.ox.ac.uk/oucl/

publications/tr/tr-25-95.html.

Carroll Morgan, Annabelle McIver, Karen Seidel, and J. W. Sanders. Probabilistic pred-
icate transformers. Technical Report TR-4-95, Oxford University Computing Labora-
tory Programming Research Group, February 1995. URL http://web.comlab.ox.ac.

uk/oucl/publications/tr/tr-4-95.html.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, Cambridge, England, June 1995.

Andrzej Nȩdzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1989.
URL http://mizar.uwb.edu.pl/JFM/Vol1/prob_1.html.

Andrzej Nȩdzusiak. Probability. Journal of Formalized Mathematics, 1990. URL http:

//mizar.uwb.edu.pl/JFM/Vol2/prob_2.html.

Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

Michael Norrish. C formalised in HOL. PhD thesis, University of Cambridge Computer
Laboratory, 1998.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997. URL http://pvs.csl.sri.com/manuals.html.

BIBLIOGRAPHY 155

Lawrence C. Paulson. Inductive analysis of the Internet protocol TLS. TISSEC, 2(3):
332–351, August 1999.

M. O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.

M. O. Rabin. Probabilistic algorithms. In Traub (1976), pages 21–39.

M. K. Reiter and A. D. Rubin. Anonymous web transactions with crowds. Communica-
tions of the ACM, 42(2):32–38, February 1999.

J. A. Robinson. A note on mechanizing higher order logic. Machine Intelligence, 5:
121–135, 1970.

Bertrand Russell. The Autobiography of Bertrand Russell. George Allen & Unwin, London,
1968. 3 volumes.

David M. Russinoff. An experiment with the Boyer-Moore theorem prover: A proof of
Wilson’s theorem. Journal of Automated Reasoning, 1:121–139, 1985.

Mark Saaltink. Domain checking Z specifications. In C. Michael Holloway and Kelly J.
Hayhurst, editors, LFM’ 97: Fourth NASA Langley Formal Methods Workshop, pages
185–192, Hampton, VA, September 1997. URL http://atb-www.larc.nasa.gov/

Lfm97/proceedings.

J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, October 1980. URL http://www.acm.org/pubs/

articles/journals/jacm/1980-27-4/p701-schwartz/%p701-schwartz.pdf.

Natarajan Shankar and Sam Owre. Principles and pragmatics of subtyping in PVS. In
D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends in Algebraic Development
Techniques, WADT ’99, volume 1827 of Lecture Notes in Computer Science, pages
37–52, Toulouse, France, September 1999. Springer. URL http://www.csl.sri.com/

reports/html/wadt99.html.

Konrad Slind. Reasoning about Terminating Functional Programs. PhD thesis, TU Mu-
nich, 1999.

Konrad Slind and Michael Norrish. The HOL System Tutorial, February 2001. Part of
the documentation included with the hol98 theorem-prover.

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on
Computing, 6(1):84–85, March 1977.

David Stirzaker. Elementary Probability. Cambridge University Press, 1994.

Laurent Théry. A quick overview of HOL and PVS, August 1999. URL http:

//www-sop.inria.fr/types-project/lnotes/types99-lnotes.html. Lecture Notes
from the Types Summer School ’99: Theory and Practice of Formal Proofs, held in
Giens, France.

J. F. Traub, editor. Algorithms and Complexity: New Directions and Recent Results.
Academic Press, New York, 1976.

156 BIBLIOGRAPHY

A. Trybulec and H. A. Blair. Computer aided reasoning. In Rohit Parikh, editor, Proceed-
ings of the Conference on Logic of Programs, volume 193 of Lecture Notes in Computer
Science, pages 406–412, Brooklyn, NY, June 1985. Springer.

Alan M. Turing. Checking a large routine. In Report of a Conference on High Speed Auto-
matic Calculating Machines, pages 67–69, Cambridge, England, June 1949. University
Mathematical Laboratory.

John von Neumann. Various techniques for use in connection with random digits. In von
Neumann’s Collected Works, volume 5, pages 768–770. Pergamon, 1963.

Tanja E. J. Vos. UNITY in Diversity: A Stratified Approach to the Verification of Dis-
tributed Algorithms. PhD thesis, Utrecht University, 2000.

Philip Wadler. The essence of functional programming. In 19th Symposium on Principles
of Programming Languages. ACM Press, January 1992.

Stan Wagon. The Banach-Tarski Paradox. Cambridge University Press, 1993.

Keith Wansbrough, Michael Norrish, Peter Sewell, and Andrei Serjantov. Timing UDP:
mechanized semantics for sockets, threads and failures. URL http://www.cl.cam.ac.

uk/users/pes20/Netsem/. Draft, 2001.

A. N. Whitehead. An Introduction to Mathematics. Williams and Northgate, London,
1911.

Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cambridge Uni-
versity Press, Cambridge, 1910.

David Williams. Probability with Martingales. Cambridge University Press, 1991.

Wai Wong. The HOL res_quan library, 1993. URL http://www.ftp.cl.cam.ac.uk/

ftp/hvg/hol98/libraries/library-docs.html. HOL88 documentation.

Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

Vincent Zammit. On the Readability of Machine Checkable Formal Proofs. PhD thesis,
University of Kent at Canterbury, March 1999.

