Fast Normalization in the HOL Theorem Prover

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

The Problem with CNF

Sometimes converting terms to CNF makes their size explode:

$$\mathsf{CNF}\left(\begin{array}{c} (a_0 \wedge a_1 \wedge a_2 \wedge a_3) \vee (b_0 \wedge b_1 \wedge b_2 \wedge b_3) \vee \\ (c_0 \wedge c_1 \wedge c_2 \wedge c_3) \vee (d_0 \wedge d_1 \wedge d_2 \wedge d_3) \end{array}\right)$$

$$=$$

$$(a_3 \vee b_3 \vee c_3 \vee d_0) \wedge (a_2 \vee b_3 \vee c_3 \vee d_0) \wedge \\ (a_1 \vee b_3 \vee c_3 \vee d_0) \wedge (a_0 \vee b_3 \vee c_3 \vee d_0) \wedge \\ \dots 992 \text{ more atoms} \dots \\ (a_0 \vee b_3 \vee c_3 \vee d_3) \wedge (a_1 \vee b_3 \vee c_3 \vee d_3) \wedge \\ (a_2 \vee b_3 \vee c_3 \vee d_3) \wedge (a_3 \vee b_3 \vee c_3 \vee d_3) \end{array}$$

Disastrous if we're converting to CNF for a SAT solver

Definitional CNF

Definitional CNF guarantees the size of normalized terms will be linear in the size of original terms:

$$\mathsf{DEF_CNF}\left(\begin{array}{c} (a_0 \wedge a_1 \wedge a_2 \wedge a_3) \vee (b_0 \wedge b_1 \wedge b_2 \wedge b_3) \vee \\ (c_0 \wedge c_1 \wedge c_2 \wedge c_3) \vee (d_0 \wedge d_1 \wedge d_2 \wedge d_3) \end{array}\right)$$

$$\exists v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}.$$

$$(v_{11} \lor \neg d_{0} \lor \neg v_{10}) \land (v_{10} \lor \neg v_{11}) \land (d_{0} \lor \neg v_{11}) \land$$

$$(v_{10} \lor \neg d_{1} \lor \neg v_{9}) \land (v_{9} \lor \neg v_{10}) \land (d_{1} \lor \neg v_{10}) \land$$

$$\dots 59 \text{ more atoms} \dots$$

$$\begin{array}{l} (v_0 \lor \neg v_1) \land (a_1 \lor \neg v_1) \land (v_0 \lor \neg a_2 \lor \neg a_3) \land \\ (a_3 \lor \neg v_0) \land (a_2 \lor \neg v_0) \land (v_2 \lor v_5 \lor v_8 \lor v_{11}) \end{array}$$

Definitional CNF by Inference

- Given an input term t, it's easy to generate the definitional CNF normalized term t'.
- This allows a fast oracle implementation of normalization into definitional CNF:

 $\{ORACLE_SAYS\} \vdash t \iff t'$

• We'd prefer a fully-expansive HOL proof that t and t' are logically equivalent:

$$\vdash t \iff t'$$

• Unfortunately, the naive algorithm to derive this theorem is (at least) quadratic in the size of *t*.

Fast Definitional CNF

- Can use a technique invented by Harrison to perform BDD operations by fully-expansive proof.
- Runs in (nearly) linear time, by making extensive use of proforma theorems.
- Essential part of this: instead of introducing many new boolean variables, we use one variable vector:

 $FAST_DEF_CNF(\cdots) = \\ \exists v : \mathbb{N} \to \mathbb{B}. \\ (v(11) \lor \neg d_0 \lor \neg v(10)) \land (v(10) \lor \neg v(11)) \land \\ (d_0 \lor \neg v(11)) \land (v(10) \lor \neg d_1 \lor \neg v(9)) \land \cdots$

Performance Results

We compare the different methods on the ADD4 term (from hardware verification) containing 1111 atoms.

Operation on the ADD4 Term	Time (s)	Infs.
Definitional NNF	10.610	7677
Oracle definitional CNF	0.390	0
Naive definitional CNF	122.620	12034
Fast definitional CNF	28.800	238258
Applying the ZCHAFF solver	4.680	0

Observe that the fast method uses more HOL inference steps than the naive method, but takes much less time.