
Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Formally Verified ARM Code

Joe Hurd

Computing Laboratory
University of Oxford

High Confidence Software and Systems
Thursday 10 May 2007

Joint work with Anthony Fox (Cambridge),
Mike Gordon (Cambridge) and Konrad Slind (Utah)

Joe Hurd Formally Verified ARM Code 1 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Talk Plan

1 Introduction

2 Elliptic Curve Cryptography

3 Formalized ARM Code

4 Verified Implementations

5 Summary

Joe Hurd Formally Verified ARM Code 2 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Verified ARM Implementations

Motivation: How to ensure that low level cryptographic
software is both correct and secure?

Critical application, so need to go beyond bug finding to
assurance of correctness.

Project goal: Create formally verified ARM implementations
of elliptic curve cryptographic algorithms.

This talk will recap project material presented at HCSS last
year, followed by work done this year.

Joe Hurd Formally Verified ARM Code 4 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Illustrating the Verification Flow

Elliptic curve ElGamal encryption

Key size = 320 bits

Verified ARM machine code

Joe Hurd Formally Verified ARM Code 5 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Assumptions and Guarantees

Assumptions that must be checked by humans:

Specification: The formalized theory of elliptic curve
cryptography is faithful to standard mathematics.
Model: The formalized ARM machine code is faithful to the
real world execution environment.

Guarantee provided by formal methods:

The resultant block of ARM machine code faithfully
implements an elliptic curve cryptographic algorithm.
Functional correctness + a security guarantee.

Of course, there is also an implicit assumption that the HOL4
proof assistant is working correctly.

Joe Hurd Formally Verified ARM Code 6 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

The HOL4 Proof Assistant

Developed by Mike Gordon’s Hardware Verification Group in
Cambridge, first major release was HOL88.

Latest release called HOL4, developed jointly by Cambridge,
Utah and ANU.

Models written in a functional language.

Reasoning in Higher Order Logic.

Joe Hurd Formally Verified ARM Code 7 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Elliptic Curve Cryptography

+

Joe Hurd Formally Verified ARM Code 9 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Elliptic Curve Cryptography

First proposed in 1985 by Koblitz and Miller.

Part of the 2005 NSA Suite B set of cryptographic algorithms.

Certicom the most prominent vendor, but there are many
implementations.

Advantages over standard public key cryptography:

Known theoretical attacks much less effective,
so requires much shorter keys for the same security,
leading to reduced bandwidth and greater efficiency.

However, there are also disadvantages:

Patent uncertainty surrounding many implementation
techniques.
The algorithms are more complex, so it’s harder to implement
them correctly.

Joe Hurd Formally Verified ARM Code 10 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Formalized Elliptic Curve Cryptography

Formalized theory of elliptic curve crypography mechanized in
the HOL4 proof assistant.

The definitions of elliptic curves, rational points and elliptic
curve arithmetic come from the textbook Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel Smart.

Designed to be easy for an evaluator to see that the
formalized definitions are a faithful translation of the textbook
definitions.

Joe Hurd Formally Verified ARM Code 11 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Example Elliptic Curve: Y 2 + Y = X 3 − X

Joe Hurd Formally Verified ARM Code 12 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Negation of Elliptic Curve Points

Blake, Seroussi and Smart define negation of elliptic curve points
using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Formally Verified ARM Code 13 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Assurance of the Specification

How can evidence be gathered to check whether the formal
specification of elliptic curve cryptography is correct?

1 Comparing the formalized version to a standard mathematics
textbook.

2 Deducing properties known to be true of elliptic curves.

3 Deriving checkable calculations for example curves.

The elliptic curve cryptography specification can be checked using
all three methods.

Joe Hurd Formally Verified ARM Code 14 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Checking the Spec 1: Comparison with the Textbook

Negation is formalized by cases on the input point, which smoothly
handles the special case of O:

Constant Definition

curve_neg e =

let f = e.field in

...

let a3 = e.a3 in

curve_case e (curve_zero e)

(λx1 y1.

let x = x1 in

let y = ~y1 - a1 * x1 - a3 in

affine f [x; y])

“− P1 = (x1,−y1 − a1x1 − a3)”

Joe Hurd Formally Verified ARM Code 15 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Checking the Spec 2: Deducing Known Properties

Negation maps points on the curve to points on the curve.

Theorem

` ∀e ∈ Curve. ∀p ∈ curve_points e.
curve_neg e p ∈ curve_points e

Joe Hurd Formally Verified ARM Code 16 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Checking the Spec 3: Example Calculations

Example elliptic curve from a textbook exercise (Koblitz 1987).

Example

ec = curve (GF 751) 0 0 1 750 0

` ec ∈ Curve

` affine (GF 751) [361; 383] ∈ curve_points ec

` curve_neg ec (affine (GF 751) [361; 383]) =
affine (GF 751) [361; 367]

` affine (GF 751) [361; 367] ∈ curve_points ec

Joe Hurd Formally Verified ARM Code 17 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Verified Compilation

Our compiler is a hybrid of traditional compiler verification
and translation validation.

Verified compiler ≡ proving the compiler correct.
Translation validation ≡ proving each compilation correct.

Source language is an executable subset of higher order logic.

The only supported types are tuples of word32s.
A fixed set of supported word operations.
Functions must be first order and tail recursive.

Target language is ARM machine code.

Behaviour of instructions determined by operational semantics
formalized in higher order logic.

Joe Hurd Formally Verified ARM Code 19 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Compiler Overview

Front end is entirely source-to-source translation (by proof).

Terms are not visible in the logic.
No AST representation of programs in front end.

Translate source (recursive) function to combinator form, and
then to ANF (administrative normal form).

These translations are semantic versions of the standard syntax
manipulations for CPS.
Register allocation done by standard graph-colouring
algorithm. Nice trick from Hickey and Nogin delivers an
α-convertible version of the function.

Back end proof uses Hoare Logic to orchestrate the synthesis
of a program that is provably equal to the combinatory form.

Further into the back end, is pretty conventional compiler
verification technology.

Joe Hurd Formally Verified ARM Code 20 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Compilation Example

Theorem

` ∀s : arm_state.

(run_arm <instructions> s)<r2>

=

Fact32 (s<r0>,s<r1>)

and we can extract the instructions to a more readable form:

Code
Name : Fact32

Arguments : (r0,r1)

Returns : r2

Body : 0: cmp r0, #0iw

1: beq + (6)

2: sub r3, r0, #1iw

3: mul r2, r0, r1

4: mov r0, r3

5: mov r1, r2

6: bal - (6)

7: mov r2, r1

Joe Hurd Formally Verified ARM Code 21 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

ARM6 Datapath

Memory
Interface Mux DIN

Field
Extractor
& Field

Extender

Mux AREG

+

Register
Bank

Mux

Mux

Shifter

ALU

ALUB

ALUA

Program
Status

Registers
Bank

Mux

INC RB
B

IM
M

/D
IN

'

RA A

PC
BU

S

4

PS
RR

D

PSRDAT

ALUNZCV

ALU

CPSR PS
RC

C
T

R
L

C
T

R
L

C
T

R
L

C
T

R
L

C
T

R
L

C
T

R
L

C
T

R
L

IR
EG

CTRL

PIPE

PSR

PSR

CP
SR

L
PS

RF
B

SH
CO

UT

SCTRLREG

SHCOUT

SC
TR

LR
EG

AR
EG

N

PC
W

A
RW

A
PS

RW
A PS

RA
RB

A
RA

A

Joe Hurd Formally Verified ARM Code 22 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

ARM6 Verification Project

ARMv3 Instruction Set Architecture (ISA) modelled in
functional subset of higher order logic.

ARM6 microarchitecture also modelled in higher order logic.

Models proved equivalent using the HOL4 proof assistant.

Took a year, but would be much quicker now.
Infrastructure developed (e.g., for reasoning about words).

CPU and memory separately modelled.

Simple memory model currently used for software execution.
More realistic models possible (future research).

Joe Hurd Formally Verified ARM Code 23 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Formalized ARM Instruction Set

Started from formal model of ARMv3 ISA verified against a
model of the ARM6 microarchitecture.

Upgraded ISA model to ARMv4 (ARMv5, Thumb planned).

Can formally reason about a wider range of ARM programs.
Caution: Upgrades are not verified against a processor model.
An ML processor simulator can be automatically extracted
from the ISA model; executes 10,000 instructions per second.

Central problem: How to reason about real ARM programs?

Exceptions, finite memory, and status flags.
Must specify the processor state changed by an instruction.
Worse: Must specify the state not changed by an instruction.

Joe Hurd Formally Verified ARM Code 24 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Specifications for ARM Code

Myreen uses the ∗ operator of separation logic to create Hoare
triples for ARM code that obey the frame rule:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

This avoids having to specify all the processor state that the
code C doesn’t change.

Specifications of the ARM move and store instructions:

{R a x ∗ R b }
MOV b, a

{R a x ∗ R b x}

{R a x ∗ R b (addr y) ∗M y }
STR a, [b]

{R a x ∗ R b (addr y) ∗M y x}

Instruction specifications are derived from the processor model.

Joe Hurd Formally Verified ARM Code 25 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Example: Deriving Specifications

Show that the decrement-and-store instruction

{R a x ∗ R b (addr y) ∗M (y − 1) }
STR a, [b,#− 4]!

{R a x ∗ R b (addr (y − 1)) ∗M (y − 1) x}

can be used as a stack push, where

stack y [x0, . . . , xm−1] n ≡ R 13 (addr y) ∗
M (y + m − 1) xm−1 ∗ · · · ∗M y x0| {z }

[xm−1, ..., x0]

∗ M (y − 1) ∗ · · · ∗M (y − n)| {z }
empty slots

Joe Hurd Formally Verified ARM Code 26 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Example: Deriving Specifications

Show that the decrement-and-store instruction

{R a x ∗ R b (addr y) ∗M (y − 1) ∗ P}
STR a, [b,#− 4]!

{R a x ∗ R b (addr (y − 1)) ∗M (y − 1) x ∗ P}

can be used as a stack push, where

stack y [x0, . . . , xm−1] n ≡ R 13 (addr y) ∗
M (y + m − 1) xm−1 ∗ · · · ∗M y x0| {z }

[xm−1, ..., x0]

∗ M (y − 1) ∗ · · · ∗M (y − n)| {z }
empty slots

Joe Hurd Formally Verified ARM Code 27 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Example: Deriving Specifications

Show that the decrement-and-store instruction

{R a x ∗ stack y xs (n + 1)}
STR a, [13,#− 4]!

{R a x ∗ stack (y − 1) (x :: xs) n}

can be used as a stack push, where

stack y [x0, . . . , xm−1] n ≡ R 13 (addr y) ∗
M (y + m − 1) xm−1 ∗ · · · ∗M y x0| {z }

[xm−1, ..., x0]

∗ M (y − 1) ∗ · · · ∗M (y − n)| {z }
empty slots

Joe Hurd Formally Verified ARM Code 28 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

The Verification Flow

A formal specification of elliptic curve cryptography derived
from mathematics (Hurd, Cambridge).

A verifying compiler from higher order logic functions to a low
level assembly language (Slind & Li, Utah).

A verifying back-end targeting ARM code (Tuerk, Cambridge).

A specification language for ARM code (Myreen, Cambridge).

A high fidelity model of the ARM instruction set derived from
a processor model (Fox, Cambridge).

The whole verification takes place in the HOL4 proof assistant.

Joe Hurd Formally Verified ARM Code 30 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Elliptic Curve Cryptography: Example 0

Test the machinery with a tiny elliptic curve cryptography library
implementing ElGamal encryption using the example curve

Y 2 + Y = X 3 − X

over the field GF(751).
The first step of the verification flow is the subset of higher order
logic:

Constant Definition

add_mod_751 (x : word32, y : word32) =
let z = x + y in
if z < 751 then z else z - 751

Joe Hurd Formally Verified ARM Code 31 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Testing In C

Tuerk has created a prototype that emits a set of functions in the
HOL subset as a C library, for testing purposes.

Code

word32 add_mod_751 (word32 x, word32 y) {
word32 z;

z = x + y;

word32 t;

if (z < 751) {
t = z;

} else {
t = z - 751;

}
return t;

}

Joe Hurd Formally Verified ARM Code 32 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Formally Verified ARM Implementation

Using Slind & Li’s compiler with Tuerk’s back-end targeting
Myreen’s Hoare triples for Fox’ ARM machine code:

Theorem

` ∀x y.

ARM_SPEC

(R 0w x * R 1w y * ~S)

(MAP assemble

[ADD AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

CMP AL 0w (Dp_shift_immediate (LSL 1w) 0w); B LT 3w;

MOV AL F 1w (Dp_immediate 0w 239w);

ORR AL F 1w 1w (Dp_immediate 12w 2w);

SUB AL F 0w 0w (Dp_shift_immediate (LSL 1w) 0w);

B AL 16777215w])

(R 0w (add_mod_751 (x,y)) * ~R 1w * ~S)

Joe Hurd Formally Verified ARM Code 33 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Formally Verified Netlist Implementation

Iyoda has a verifying hardware compiler that accepts the same
HOL subset as Slind & Li’s compiler.

It generates a formally verified netlist ready to be synthesized:

Theorem
` InfRise clk =⇒

(∃v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10.

DTYPE T (clk,load,v3) ∧ COMB $~ (v3,v2) ∧
COMB (UNCURRY $∧) (v2 <> load,v1) ∧ COMB $~ (v1,done) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v8) ∧ CONSTANT 751w v7 ∧
COMB (UNCURRY $<) (v8 <> v7,v6) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v5) ∧
COMB (UNCURRY $+) (inp1 <> inp2,v10) ∧ CONSTANT 751w v9 ∧
COMB (UNCURRY $-) (v10 <> v9,v4) ∧
COMB (λ(sw,in1,in2). (if sw then in1 else in2))

(v6 <> v5 <> v4,v0) ∧ ∃v. DTYPE v (clk,v0,out)) ==>

DEV add_mod_751

(load at clk,(inp1 <> inp2) at clk,done at clk,out at clk)

Joe Hurd Formally Verified ARM Code 34 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Results So Far

So far only initial results—both verifying compilers need
extending to handle full elliptic curve cryptography examples.

The ARM compiler can compile simple 32 bit field operations.

The hardware compiler can compile field operations with any
word length, but with 320 bit numbers the synthesis tool runs
out of FPGA gates.

Joe Hurd Formally Verified ARM Code 35 / 37

Introduction Elliptic Curve Cryptography Formalized ARM Code Verified Implementations Summary

Summary

This talk has given an overview of the project to generate
formally verified elliptic curve cryptography in ARM code.

There’s much work still to be done to generate, say, a formally
verified ARM code implementation of ECDSA.

It would be interesting to extend the C output to generate
reference implementations in other languages (e.g., Cryptol).

Joe Hurd Formally Verified ARM Code 37 / 37

	Introduction
	Elliptic Curve Cryptography
	Formalized ARM Code
	Verified Implementations
	Summary

