
Introduction Formalizing pGCL Verification Conditions Current Work Summary

Mechanizing the Probabilistic Guarded Command
Language

Joe Hurd

Computing Laboratory
University of Oxford

IFIP Working Group 2.3
Tuesday 9 January 2007

Joint work with Carroll Morgan (UNSW), Annabelle McIver (Macquarie),

Orieta Celiku (CMU) and Aaron Coble (Cambridge)

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 1 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Talk Plan

1 Introduction

2 Formalizing pGCL

3 Verification Conditions

4 Current Work

5 Summary

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 2 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Probabilistic Programs

Giving programs access to a random number generator is useful for
many applications:

Symmetry breaking

Rabin’s mutual exclusion algorithm

Eliminating pathological cases

Randomized quicksort

Gain in (best known?) theoretical complexity

Sorting nuts and bolts

Solving a problem in an extremely simple way

Finding minimal cuts

Research goal: Apply formal methods to programs with
probabilistic nondeterminism.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 4 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Probabilistic Guarded Command Language

pGCL stands for Probabilistic Guarded Command Language.

It’s Dijkstra’s GCL extended with probabilistic choice

c1 p⊕ c2

Like GCL, the semantics is based on weakest preconditions.

Important: retains nondeterministic choice

c1 u c2

Developed by Morgan, McIver et al. in Oxford and then
Sydney, 1994–

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 5 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

The HOL4 Theorem Prover

Developed by Mike Gordon’s Hardware Verification Group in
Cambridge, first release was HOL88.

Latest release called HOL4, developed jointly by Cambridge,
Utah and ANU.

Implements classical Higher Order Logic (a.k.a. simple type
theory).

Sprung from the Edinburgh LCF project, so has a small logical
kernel to ensure soundness.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 6 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Motivation

Why formalize?

The theoretical results and program algebra are checked by
logically deriving them from a simple set of definitions.

Example: Deriving the rules of Floyd-Hoare logic from a
denotational semantics.

When the program algebra is mechanized its feasibility can be
checked by directly applying it to example programs.

Analysis tools that deduce from the semantics can be used to
check other tools or generate test vectors.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 7 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

pGCL Semantics

Given a standard GCL program C and a postcondition Q, let
P be the weakest precondition that satisfies

[P]C [Q]

Precondition P is weaker than P ′ if P ′ =⇒ P.

Think of the program C as a function that transforms
postconditions into weakest preconditions.

pGCL generalizes this to probabilistic programs:

Conditions α → B become expectations α → [0,+∞].
Expectation P is weaker than P ′ if P ′ v P.
Think of programs as expectation transformers.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 9 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Expectations

Expectations are reward functions, from states to expected
rewards.

Modelled in HOL as functions α → [0,+∞].

Define the following operations on expectations:

Min e1 e2 ≡ λs. min (e1 s) (e2 s)
e1 v e2 ≡ ∀s. e1 s ≤ e2 s
Cond b e1 e2 ≡ λs. if b s then e1 s else e2 s
Lin p e1 e2 ≡ λs. p s × e1 s + (1− p s)× e2 s

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 10 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Expectation Transformers

Expectation transformers are functions from expectations to
expectations.

Expectation transformers that correspond to probabilistic
programs satisfy healthiness conditions:

feasible t ≡ t Zero = Zero
monotonic t ≡ ∀e1, e2. e1 v e2 =⇒ t e1 v t e2

scaling t ≡ ∀e, c . t (λs. c × e s) = λs. c × t e s
subadditive t ≡ ∀e1, e2. t (λs. e1 s + e2 s) v λs. t e1 s + t e2 s
subtractive t ≡ ∀e, c . c 6= ∞ =⇒ t (λs. e s − c) v λs. t e s − c

Expectations form a lattice, so expectation transformers can
be up continuous, have least and greatest fixed points, etc.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 11 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Healthiness Condition

The definition of healthiness for expectation transformers is
analogous to healthiness of predicate transfomers in standard
GCL:

healthy t ≡ feasible t ∧ sublinear t ∧ up continuous t

where

sublinear t ≡ scaling t ∧ subadditive t ∧ subtractive t

Sublinearity in pGCL is the generalization of the conjunctivity
condition in GCL.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 12 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

States

Fix states to be mappings from variable names to integers:

state ≡ string → Z

For convenience, define a state update function:

assign v f s ≡ λw . if v = w then f s else s w

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 13 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

pGCL Commands

Model pGCL commands with a HOL datatype:

command ≡ Abort
| Skip
| Assign of string × (state → Z)
| Seq of command× command
| Nondet of command× command
| Prob of (state → [0, 1])× command× command
| While of (state → B)× command

Note: The probability in Prob can depend on the state.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 14 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Derived Commands

Define all other commands as syntactic sugar:

v := f ≡ Assign v f
c1 ; c2 ≡ Seq c1 c2

c1 u c2 ≡ Nondet c1 c2

c1 p⊕ c2 ≡ Prob (λs. p) c1 c2

if b then c1 else c2 ≡ Prob (λs. if b s then 1 else 0) c1 c2

v := {e1, . . . , en} ≡ v := e1 u · · · u v := en

v := 〈e1, · · · , en〉 ≡ v := e1 1/n⊕ v := 〈e2, . . . , en〉
b1 → c1 | · · · | bn → cn ≡{

Abort if none of the bi hold on the current state∏
i∈I ci where I = {i | 1 ≤ i ≤ n ∧ bi holds}

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 15 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Weakest Preconditions

Define weakest preconditions (wp) directly on commands:

` (wp Abort = λe. Zero)

∧ (wp Skip = λe. e)

∧ (wp (Assign v f) = λe, s. e (assign v f s)

∧ (wp (Seq c1 c2) = λe. wp c1 (wp c2 e))

∧ (wp (Nondet c1 c2) = λe. Min (wp c1 e) (wp c2 e))

∧ (wp (Prob p c1 c2) = λe. Lin p (wp c1 e) (wp c2 e))

∧ (wp (While b c) = λe. lfp (λe ′. Cond b (wp c e ′) e))

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 16 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Commands are Healthy

The major theorem of our formalization:

` ∀c . healthy (wp c)

Proof by structural induction (800 lines of HOL4 script).

The hardest part was sublinearity of while loops.

Needed several lemmas, for example:

` ∀t, e1, e2.
healthy t ∧ bounded t ∧ e2 v e1 =⇒
t (λs. e1 s − e2 s) v λs. t e1 s − t e2 s

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 17 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Example: Monty Hall

contestant switch ≡
pc := {1, 2, 3} ;
cc := 〈1, 2, 3〉 ;

pc 6= 1 ∧ cc 6= 1 → ac := 1
| pc 6= 2 ∧ cc 6= 2 → ac := 2
| pc 6= 3 ∧ cc 6= 3 → ac := 3 ;

if ¬switch then Skip else
cc := (if cc 6= 1 ∧ ac 6= 1 then 1

else if cc 6= 2 ∧ ac 6= 2 then 2 else 3)

The postcondition is simply the desired goal of the contestant, i.e.,

win ≡ if cc = pc then 1 else 0.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 18 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Example: Monty Hall

Verification proceeds by:
1 Rewriting away all the syntactic sugar.
2 Expanding the definition of wp.
3 Carrying out the numerical calculations.

After 22 seconds and 250536 primitive inferences in the logical
kernel:

` wp (contestant switch) win = λs. if switch then 2/3 else 1/3

In other words, by switching the contestant is twice as likely
to win the prize.

Not trivial to do by hand, because the intermediate
expectations get rather large.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 19 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Weakest Liberal Preconditions

Weakest liberal preconditions (wlp) model partial correctness.

` (wlp Abort = λe. Infty)

∧ (wlp Skip = λe. e)

∧ (wlp (Assign v f) = λe, s. e (assign v f s)

∧ (wlp (Seq c1 c2) = λe. wlp c1 (wlp c2 e))

∧ (wlp (Nondet c1 c2) = λe. Min (wlp c1 e) (wlp c2 e))

∧ (wlp (Prob p c1 c2) = λe. Lin p (wlp c1 e) (wlp c2 e))

∧ (wlp (While b c) = λe. gfp (λe ′. Cond b (wlp c e ′) e))

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 21 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Weakest Liberal Preconditions: Example

Consider the simplest infinite loop:

loop ≡ While (λs. >) Skip

For any postcondition post, we have

` wp loop post = Zero ∧ wlp loop post = Infty

These correspond to the total and partial Hoare triples

[⊥] loop [post] {>} loop {post}

as we would expect from an infinite loop.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 22 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Calculating wlp Lower Bounds

Suppose we have a pGCL command c and a postcondition q.

We wish to derive a lower bound on the weakest liberal
precondition.

In general, programs are shown to have desirable properties by
proving lower bounds.
Example: (λs. 0.95) v wlp prog (if ok then 1 else 0)

Can think of this as the query P v wlp c q.

Idea: use a Prolog interpreter to solve for the variable P.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 23 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Calculating wlp: Rules

Simple rules:

Infty v wlp Abort Q

Q v wlp Skip Q

R v wlp C2 Q ∧ P v wlp C1 R
=⇒

P v wlp (Seq C1 C2) Q

Note: the Prolog interpreter automatically calculates the ‘middle
condition’ in a Seq command.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 24 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Calculating wlp: While Loops

Define an assertion command: Assert p c ≡ c .

Provide a while rule that requires an assertion:

R v wlp C P ∧ P v Cond B R Q
=⇒

P v wlp (Assert P (While B C)) Q

The second premise generates a verification condition as an
extra subgoal.

It is left to the user to provide a useful loop invariant in the
Assert around the while loop.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 25 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

Suppose N processors are executing concurrently, and from
time to time some of them need to enter a critical section of
code.

The mutual exclusion algorithm of Rabin (1982, 1992) works
by electing a leader who is permitted to enter the critical
section:

1 Each of the waiting processors repeatedly tosses a fair coin
until a head is shown

2 The processor that required the largest number of tosses wins
the election.

3 If there is a tie, then have another election.

Could implement the coin tossing using
n := 0 ; b := 0 ; While (b = 0) (n := n + 1 ; b := 〈0, 1〉)

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 26 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

For our verification, we do not model N processors concurrently
executing the above voting scheme, but rather the following data
refinement of that system:

1 Initialize i with the number of processors waiting to enter the
critical section who have just picked a number.

2 Initialize n with 1, the lowest number not yet considered.

3 If i = 1 then we have a unique winner: return Success.

4 If i = 0 then the election has failed: return Failure.

5 Reduce i by eliminating all the processors who picked the
lowest number n (since certainly none of them won the
election).

6 Increment n by 1, and jump to Step 3.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 27 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

The following pGCL program implements this data refinement:

rabin ≡ While (1 < i) (

n := i ;

While (0 < n)

(d := 〈0, 1〉 ; i := i − d ; n := n − 1)

)

The desired postcondition representing a unique winner of the
election is

post ≡ if i = 1 then 1 else 0

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 28 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

The precondition that we aim to show is

pre ≡ if i = 1 then 1 else if 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter the
critical section, the probability that the voting scheme will
produce a unique winner is 2/3, except for the trivial case of
one processor when it will always succeed.”

Surprising: The probability of success is independent of the
number of processors.

We formally verify the following statement of partial
correctness:

pre v wlp rabin post

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 29 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

Need to annotate the While loops with invariants.

The invariant for the outer loop is simply pre.

For the inner loop we used

if 0 ≤ n ≤ i then 2/3× invar1 i n + invar2 i n else 0

where

invar1 i n ≡
1− (if i = n then (n + 1)/2n else if i = n + 1 then 1/2n else 0)

invar2 i n ≡ if i = n then n/2n else if i = n + 1 then 1/2n else 0

Coming up with these was the hardest part of the verification.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 30 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Rabin’s Mutual Exclusion Algorithm

The verification proceeded as follows:

1 Annotate the program to create the goal:

pre v wlp annotated rabin post

2 This is now in the correct form to apply the VC generator.

3 Finish off the VCs with 58 lines of HOL-4 proof script.

|- Leq (\s. if s"i" = 1 then 1

else if 1 < s"i" then 2/3 else 0)

(wlp rabin (\s. if s"i" = 1 then 1 else 0))

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 31 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Relational Semantics

This formalization started from the weakest precondition
semantics of pGCL programs.

Instead can derive this from a relational semantics between
initial states and probability distributions over final states:

α× (α → [0, 1]) → B

Formalizing this would verify the connection between pGCL
expectations and probability theory expectations.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 33 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Loop Rules

Practical program analysis tools need robust ways of reasoning
about programs with loops.

The usual slogan

total correctness = partial correctness + termination

doesn’t hold for (this formalization of) pGCL!

Counterexample verified in HOL4:

` wlp (While (n = 0) (n := 〈0, 1〉)) One 6= One

What is the best way of working around this?

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 34 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Summary

Formalized the theory of pGCL in higher-order logic.

Created an automatic tool for deriving sufficient conditions for
partial correctness.

Useful product of mechanizing a program semantics.

There’s still much to be done formalizing the theory and
implementing practical program analysis tools.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 36 / 37

Introduction Formalizing pGCL Verification Conditions Current Work Summary

Related Work

Formal methods for probabilistic programs:

Christine Paulin’s work in Coq, 2002.
Prism model checker, Kwiatkowska et. al., 2000–

Mechanized program semantics:

Formalizing Dijkstra, Harrison, 1998.
Mechanizing program logics in higher order logic, Gordon,
1989.

Joe Hurd Mechanizing the Probabilistic Guarded Command Language 37 / 37

	Introduction
	Formalizing pGCL
	Verification Conditions
	Current Work
	Summary

