Joe Hurd

OpenTheory
Package Management for Higher Order Logic Theories

Joe Hurd

Galois, Inc.
joe@galois.com

PLMMS 2009
Friday 21 August 2009

OpenTheory

galois

1/

Talk Plan

@ Introduction

@ Articles of Proof
© Compression

@ Composability

e Summary

Joe Hurd OpenTheory 2 /45

Introduction
Motivation

@ Interactive theorem proving is growing up.

@ It has moved beyond toy examples of mathematics and
program verification.
o The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
e The CompCert project used the Coq theorem prover to verify
an optimizing compiler from a large subset of C to PowerPC
assembly code.
@ There is a need for theory engineering techniques to support
these major verification efforts.
e “Proving in the large.”

galois

Joe Hurd OpenTheory 4 /45

Introduction
Theory Engineering

@ Think of a theory as a module in a weird programming
language that implements a set of theorems:

example module ~ theory example
a— « type ~ theorem Ft=1t
AX. X value ~ proof refl t

@ Theory engineering is to proving as software engineering is to
programming.

galois

Joe Hurd OpenTheory 5/ 45

Introduction
Software Engineering for Theories

An incomplete list of software engineering techniques applicable to
the world of theories:
e Standards: Programming languages, basis libraries.

@ Abstraction: Module systems to manage the namespace and
promote reuse.

e Multi-Language: Tight/efficient (e.g., FFls) to loose/flexible
(e.g., SOAs).

o Distribution: Package repos with dependency tracking and
automatic installation.

galois

Joe Hurd OpenTheory 6 /45

Introduction

The OpenTheory Project

@ The goal of the OpenTheory project is to apply software
engineering principles to theories of higher order logic.

@ The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner polymorphism.

e The logic implemented by HOL4, HOL Light and ProofPower.

@ By focusing on a concrete case study we aim to investigate
the issues surrounding:

Exchanging theories between theorem prover implementations.
Building a common library of higher order logic theories.
Discovering design techniques for theories that compose well.
Installing and upgrading theories while respecting their
dependencies.

galois

Joe Hurd OpenTheory 7 /45

Introduction
OpenTheory Articles

@ A theory of higher order logic consists of:

@ An import list of theorems I that the theory requires.

@ An export list of theorems A that the theory provides.

© A formal proof I' H A that the theorems in A logically derive
from the theorems in T,

@ This talk will introduce the OpenTheory article file format for
higher order logic theories.
@ This is a standards-based approach to theories, to:

e enable simple import and export between theorem prover
implementations;

e reduce storage requirements by compressing theories; and

e think about composability of theories.

galois

Joe Hurd OpenTheory 8 /45

Articles of Proof
Tactic Proof Scripts

Porting theories between higher order logic theorem provers is
currently a painful process of editing scripts that call proof tactics:

Code (Typical HOL Light tactic script proof)

let NEG_IS_ZERO = prove
(‘!x. neg x = Zero <=> x = Zero‘,
MATCH_MP_TAC N_INDUCT THEN
REWRITE_TAC [neg_def] THEN
MESON_TAC [N_DISTINCT]);;

Difficulty: Every theorem prover implements a subtley different
set of tactics, the behaviour of which evolves across versions.

galois

Joe Hurd OpenTheory 10 / 45

Articles of Proof
Theorem Provers in the LCF Design

@ Higher order logic theorem provers are just functional
programs, where one of the modules is the logical kernel:

Code (The opentheory logical kernel)

type thm

(x refl t yields the theorem |- t = t *)
val refl : Term.term -> thm

[...10 other primitive inferences...]

o Key ldea: The thm type is abstract, so the only way to
create a theorem is to use the primitive inferences of the logic.

@ Tactics and other proof procedures must eventually expand to
primitive inferences. galoi S

Joe Hurd OpenTheory 11 / 45

Articles of Proof
Compiled Theories

Joe Hurd

Approach: Instead of storing the source tactic script, store a
compiled version of the theory by fully expanding the tactics
to a primitive inference proof.
Benefit: The logic will never change, so the compiled theories
will never suffer from bit rot.

e Whereas tactic scripts can break every time the tactics change.

Benefit: The compiled proof need only store the inferences
that contribute to the proof.

e Whereas tactic scripts often explore many dead ends before
finding a valid proof.

Drawback: Once the theory has been compiled to a proof, it
is difficult to change it.

e So theories should be compiled only when they are stable
enough to be archived.

galois

OpenTheory 12 / 45

Articles of Proof
Representing Proofs

Joe Hurd

Not all higher order theorem provers build explicit proof
objects for theorems.

However, every tactic in the theorem prover is a function that
calls lower-level tactics, all the way down to the primitive
inference functions in the logical kernel.

Thus the proof of a theorem in a higher order logic theorem
prover can be represented as a call tree in a functional
programming language.

The OpenTheory article format is a direct representation of
this call tree.

galois

OpenTheory 13 / 45

Articles of Proof
Proofs as Stack-Based Programs

@ Articles represent call trees in functional programming
languages as programs in a stack-based language.

@ The theorem prover interprets this stack-based program, and
simulates the primitive inference calls that are described by
the stack-based program.

@ When the theorem prover has finished interpreting the
program, it will have simulated the entire proof of the
theorems exported by the article.

@ The stack-based program representation of proofs is easy to
read, and easy to generate by instrumenting the inference
functions in the theorem prover.

galois

Joe Hurd OpenTheory 14 / 45

Articles of Proof
Stack Operations

@ Articles are programs in a stack-based language.
@ They are a sequence of commands, one per line.

@ Most commands build up data objects to be used as function
arguments or return values.

Definition (The “var” article command)
var

Pop a type ty; pop a name n; push a variable
with name n and type ty.

Stack: Before: Otype ty :: Oname n :: stack
After: Oterm (mk_var (n,ty)) :: stack

V.

galois

Joe Hurd OpenTheory 15 / 45

Articles of Proof

Article Data Objects

Different kinds of data appear in call trees representing proofs, and
these are defined in the article format.

Definition (Article data objects)
datatype object =

Oerror

Oint of int

Oname of string
Olist of object list
Otype of type

Oterm of term

Othm of thm

Ocall of name

(*
(*
(*
(*
(*
(*
(*
(*

An error value

A number

name

list (or tuple) of objects
higher order logic type
higher order logic term
higher order logic theorem
special object marking a
function call

f - -

*)
*)
*)
*)
*)
*)
*)

*)

Joe Hurd

OpenTheory

galois

16 / 45

Articles of Proof

Call Stack Operations

Definition (The “call” and “return” article commands)

call
Pop a name n; pop an object i; push the function call
marker Ocall n; push the input value i.

Stack: Before: Oname n :: i :: stack
After: i :: Ocall n :: stack

return
Pop a name n; pop an object r; pop objects from the stack
up to and including the top function call marker Ocall n;
push the return value r.

Stack: Before: Oname n :: r :: ... :: Ocall n :: stack
After: r :: stack

galois

Joe Hurd OpenTheory 17 / 45

Articles of Proof
Article Exports

In addition to the stack, programs reading articles also maintain a

list of theorems that will be exported from theory.

Definition (The “save” article command)

save
Pop a theorem th; add th to the list of
theorems that the article will export.

Stack: Before: O0Othm th :: stack
After: stack

Export list: Before: saved
After: saved @ [th]

Joe Hurd OpenTheory

galois

18 / 45

Articles of Proof

Constructing Theorems

The thm command constructs a theorem with given hypotheses
and conclusion.

Definition (The “thm” article command)

thm
Pop a term c; pop a list of terms h;
push the theorem h |- ¢ with hypothesis h and conclusion c.
Stack: Before: Oterm c :: Olist [Oterm h1l, ..., Oterm hn] :: stack
After: Othm ([h1, ..., hn] |- c¢) :: stack

But wait! Theorems can't be constructed from their hypotheses
and conclusion, they must be proved using primitive inferences.
What's going on?
galois

Joe Hurd OpenTheory 19 / 45

Articles of Proof

Constructing Theorems (The Real Story)

Joe Hurd

@ The thm just gives the specification for the theorem to be
constructed—it doesn't say how it should be proved.

@ Theorems are proved by the following methods (in order of
preference):

@ The theorem might already be on the export list of the theory.

@ The current function might be a primitive inference rule, in
which case the result theorem is proved by simulating the
inference using the input arguments.

© The theorem might be inside a data object on the stack.

@ If none of the previous rules apply, assert the theorem as an
axiom and add it to the import list of the article.

galois

OpenTheory 20 / 45

Articles of Proof
The Dictionary

@ In addition to the stack and the export list, programs reading
articles also maintain a dictionary mapping integers to data
objects.

@ Data objects need only be constructed once, saved in the
dictionary and then used multiple times.

@ Without the dictionary, data objects with a great deal of
memory sharing could expand exponentially in articles.

galois

Joe Hurd OpenTheory 21 /45

Articles of Proof
Adding to the Dictionary

Definition (The “def” article command)
def

Pop a number k; peek an object x; update the
dictionary so that key k maps to object x.

Stack: Before: O0Oint k :: x :: stack
After: x :: stack

Dictionary: Before: dict
After: dictl[k |[-> x]

galois

Joe Hurd OpenTheory 22 /45

Articles of Proof
Reading the Dictionary

Definition (The “ref” article command)

ref
Pop a number k; look up key k in the dictionary
to get an object x; push the object x.

Stack: Before: 0int k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict

galois

Joe Hurd OpenTheory 23 /45

Articles of Proof

Removing from the Dictionary

Definition (The “remove” article command)
remove

Joe Hurd

Pop a number k; look up key k in the dictionary
to get an object x; push the object x; delete
the entry for key k from the dictionary.

Stack: Before: O0Oint k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict[entry k deleted]

OpenTheory

galois

24 / 45

Compression

Generating Articles from HOL Light

@ We instrumented HOL Light v2.20 to emit articles for each of
the theory files in the distribution.

@ Each primitive inference (and selected other functions)
generates call and return article commands with the
argument and return values.

o Exceptions are trapped and an Oerror return value is
generated, and then the exception is re-raised.

@ The theorems left on the stack are treated as the export list of
the article.

@ For each article a dictionary is maintained of all types and
terms constructed.

galois

Joe Hurd OpenTheory 26 / 45

HOL Light Articles

HOL Light article (Kb) gzip'ed
theory article (Kb)
num 1,820 227
arith 27,469 2,884
wf 29,277 3,222
calc_num 3,922 374
normalizer 2,845 300
grobner 2,417 257
ind-types 10,625 1,274
list 12,368 1,485
realax 23,628 2,519
calc_int 2,844 314
realarith 16,275 1,326
real 30,031 3,179
calc_rat 2,555 289
int 40,617 3,465
sets 168,586 17,514
iter 207,324 17,557
cart 20,351 2,076
define 82,185 8,157
Joe Hurd OpenTheory

galois

27 / 45

Compression
Compressing Articles

@ The articles generated by HOL Light are compressed by the
following post-processing steps:

@ Adding explicit save commands to the exported theorems,
instead of leaving them on the stack.

@ Not adding data objects to the dictionary that are only used
once.

© Removing data objects from the dictionary on their last use.
@ Eliminating all function calls where the result does not
contribute to the exported theorems.

@ Trick: By storing dependency pointers with each data object,
the garbage collector takes care of dead inference elimination
automatically as the article is read.

galois

Joe Hurd OpenTheory 28 / 45

Compression

Compressing the HOL Light Articles

HOL Light article | comp. | comp. gzip’ed | gzip’ed | comp.
theory (Kb) (Kb) ratio article comp. ratio
(Kb) (Kb)
num 1,820 813 56% 227 113 51%
arith 27,469 7,548 73% 2,884 1,015 65%
wf 29,277 6,330 79% 3,222 861 74%
calc_num 3,922 1,570 60% 374 203 46%
normalizer 2,845 688 76% 300 92 70%
grobner 2,417 748 70% 257 103 60%
ind-types 10,625 4,422 59% 1,274 599 53%
list 12,368 4,870 61% 1,485 673 55%
realax 23,628 7,989 67% 2,519 1,070 58%
calc_int 2,844 861 70% 314 119 63%
realarith 16,275 4,684 2% 1,326 589 56%
real 30,031 9,346 69% 3,179 1,217 62%
calc_rat 2,555 1,166 55% 289 157 46%
int 40,617 9,546 7% 3,465 1,249 64%
sets 168,586 | 30,315 83% 17,514 4,048 7%
iter 207,324 | 32,422 85% 17,557 4,199 7%
cart 20,351 3,632 83% 2,076 495 7%
define 82,185 | 16,409 81% 8,157 2,175 74%

Joe Hurd

OpenTheory

galois

29 / 45

HOL Light Article Summary

Concatenating all the HOL Light theories in turn generates an
article exporting 129,888 theorems, and depending on 3 axioms:

Axioms (The HOL Light axioms)

types: bool fun ind
consts: V A = = d ONE_ONE ONTO select —
thms: - Vt. (Ax. t x) =t

FVP,x. Px = P (select P)

F3df. ONE_LONE f A -ONTO f

galois

Joe Hurd OpenTheory 30/ 45

Composability
Article Summaries

@ Until now we have been focused on the details of the proof
format.

@ Now let us focus on the interface to the article, called
summaries, I = A:

o [: The set of axioms that the theory depends on.
o A: The set of theorems that the theory exports.

@ Reducing the export set is always safe:
filteras (TFA) = TH(ANA)
@ Also, stack-based languages are concatenative:
(MiFAY)-(TaFA) = T1U(Ma—A))FATUA,

galois

Joe Hurd OpenTheory 32 /45

Composability
Mapping Constant Names

Definition (The “const” article command)

const

Pop a type ty; pop a name n; push a constant
with name (interpret_const_name n) and type ty.

Stack: Before: O0Otype ty :: Oname n :: stack
After: Oterm (mk_comnst (n’,ty)) :: stack
where n’ = interpret_const_name n

The interpret_const _name function is present to handle the

situation where theorem provers have given the same constant
different names.

galois

Joe Hurd OpenTheory 33 /45

Composability
Theory Interpretations

@ The interpret_const_name and interpret_type_name
functions can be used creatively to simulate theory
interpretations.

@ The same article can be re-run with different interpretations
to bind the dependencies to different theorems in the local
context, and generate different exports.

@ This provides a limited theory substitution operator.

(TFA)o = Tolk Ao

galois

Joe Hurd OpenTheory 34 /45

Composability
Theory Operations

@ We have presented three theory operations:
© reducing the exported theorems;
@ concatenation;
@ interpreting constant and type names.
@ Theory Engineering Challenge: Design theories that can be
applied in many contexts using the above operations.

@ From this perspective, theories are like ML functors, which
map modules to modules:

ML module ~ HOL theory
types ~ types
values ~ constants

type judgements ~ theorems
implementation ~ proof

galois

Joe Hurd OpenTheory 35 /45

Composability
Example |

Code (A Haskell type class instance)

instance Ord a => Ord [a] where
(] <= _ = True
i <= 1] False
X:Xs <= y:ys if x <= y then
if y <= x then xs <= ys else True
else False

What's missing here?
Missing Dependency: Require <= to be a total order on elements.

Missing Export: Can guarantee that <= is a total order on
elements.

galois

Joe Hurd OpenTheory 36 / 45

Composability

Example | — Adding Properties to Type Classes

Create a theory containing an uninterpreted type T and constant
cmp, and an axiom that cmp is a total order over T.

Axioms (Type class example theory)

types:

T
consts:

cmp total_order
thms:

|- total_order cmp

When the theory is applied, the type T and constant cmp will be
interpreted to a concrete type and total order.

galois

Joe Hurd OpenTheory 37 /45

Composability

Example | — Adding Properties to Type Classes

Theory (Type class example theory)

consts:
cmp_list
thms:
|- cmp_list NIL 12 = T /\
cmp_list (CONS hil t1) NIL = F /\
cmp_list (CONS hil t1) (CONS h2 t2) =
if cmp hl h2 then

if cmp h2 hl then cmp_list tl t2 else T
else F

|- total_order cmp_list

We retain the definition of cmp_list from the Haskell type class
instance, but we also know that it is a total order (if cmp is).
galois

Joe Hurd OpenTheory 38 /45

Composability
Example I

@ Harrison's thesis showed how to mechanize the construction
of the real numbers using the positive route:

Z+ ~ Q+ ~ RJr
@ After this step there remain three similar constructions:
Zt~~7 Qt~Q RTwR

@ This is a perfect application for theory interpretation.

galois

Joe Hurd OpenTheory 39 /45

Composability

Example |l — Defining Negative Number Types

Axioms (Negative number example theory)

types:
P
consts:
leP addP subP multP
thms:
|- !'x. 1leP x x
|- !'xy. 1eP xy /\ 1leP y x ==> x =y
|- !'xyz. 1eP xy /\ 1leP y z ==> 1eP x 2z
|- 'x y. 1eP x y \/ 1leP y x
|- !'x y. addP x y = addP y x
|- 'xy z. addP (addP x y) z = addP x (addP y z)
|- 'x x> yy’.
leP x x’ /\ leP y y’ ==> 1leP (addP x y) (addP x’ y’)
|- 'x y. "1leP (addP x y) x
|- 'x y. "1eP y x ==> addP x (subP y x) =y
|- !'x y. multP x y = multP y x
|- 'x y z. multP (multP x y) z = multP x (multP y z) iS

Joe Hurd OpenTheory 40 / 45

Composability

Example |l — Defining Negative Number Types
Theory (Negative number example theory)
types:
N
consts:
zero le add neg sub mult inject
thms:

|- !'x. le x x

[-!'xy. lexy /\Nleyx==>x=y

|- 'xyz. lexy /\ leyz==>1lexz
|- 'xy. lexy \/ leyx

|- !'x. add zero x = x

|- !'x. add x zero = x

|- 'x y. add x y = add y x

|- 'x y z. add (add x y) z = add x (add y z)
|- !'xyz. add xy=add x z = (y = z)

|- 'x y z. le (add x y) (add x z) = le y z
|- 'x x> yy’. .
le x x> /\ le y y’> ==> le (add x y) (add x’ y’) 1S

Joe Hurd OpenTheory 41/ 45

Example |l — Defining Negative Number Types

Theory (Negative number example theory)

more thms:
|- neg zero = zero
|- 'x. neg x = zero = (x = zero)

|- !'x. neg (neg x) = x
|- !'x. add x (neg x) = zero
|- !'x. add (neg x) x = zero

|- sub x y = add x (neg y)
|- 'x y. add x (sub y x) =y

|- !'x. mult zero x = zero

|- !'x. mult x zero = zero

|- !'x y. mult x y = mult y x

|- 'x y z. mult (mult x y) z = mult x (mult y z)

Joe Hurd OpenTheory 42 / 45

Example |l — Defining Negative Number Types

Theory (Negative number example theory)

even more thms:
|- 'x y. 1eP x y = le (inject x) (inject y)
|- !'x y. inject (addP x y) = add (inject x) (inject y)
|- 'x y.
“1eP x y ==>
inject (subP x y) = sub (inject x) (inject y)
|- !'x y. inject (multP x y) = mult (inject x) (inject y)

|- !x. “(inject x = zero)
|- !'x y. “(inject x = neg (inject y))

|- !'p.
(!x. p (inject x)) /\ p zero /\
('z. p (neg (inject x))) ==> !x. p x

galois

Joe Hurd OpenTheory 43 / 45

Summary

@ This talk has presented the OpenTheory project, which aims
to apply software engineering principles to theories of higher
order logic.

@ The article format for higher order logic theories is now stable.

@ The next challenge: installing and upgrading theories with
automatic dependency management.

@ The project web page:
http://gilith.com/research/opentheory

galois

Joe Hurd OpenTheory 45 / 45

http://gilith.com/
re
sear
ch/opentheory

	Introduction
	Articles of Proof
	Compression
	Composability
	Summary

