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Motivation

Interactive theorem proving is growing up.

It has moved beyond toy examples of mathematics and
program verification.

The FlySpeck project is driving the HOL Light theorem prover
towards a formal proof of the Kepler sphere-packing conjecture.
The CompCert project used the Coq theorem prover to verify
an optimizing compiler from a large subset of C to PowerPC
assembly code.

There is a need for theory engineering techniques to support
these major verification efforts.

“Proving in the large.”
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Theory Engineering

Think of a theory as a module in a weird programming
language that implements a set of theorems:

example module ∼ theory example
α→ α type ∼ theorem ` t = t
λx . x value ∼ proof refl t

Theory engineering is to proving as software engineering is to
programming.

Joe Hurd OpenTheory 5 / 45



Introduction Articles of Proof Compression Composability Summary

Software Engineering for Theories

An incomplete list of software engineering techniques applicable to
the world of theories:

Standards: Programming languages, basis libraries.

Abstraction: Module systems to manage the namespace and
promote reuse.

Multi-Language: Tight/efficient (e.g., FFIs) to loose/flexible
(e.g., SOAs).

Distribution: Package repos with dependency tracking and
automatic installation.
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The OpenTheory Project

The goal of the OpenTheory project is to apply software
engineering principles to theories of higher order logic.

The initial case study for the project is Church’s simple theory
of types, extended with Hindley-Milner polymorphism.

The logic implemented by HOL4, HOL Light and ProofPower.

By focusing on a concrete case study we aim to investigate
the issues surrounding:

Exchanging theories between theorem prover implementations.
Building a common library of higher order logic theories.
Discovering design techniques for theories that compose well.
Installing and upgrading theories while respecting their
dependencies.
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OpenTheory Articles

A theory of higher order logic consists of:
1 An import list of theorems Γ that the theory requires.
2 An export list of theorems ∆ that the theory provides.
3 A formal proof Γ ` ∆ that the theorems in ∆ logically derive

from the theorems in Γ.

This talk will introduce the OpenTheory article file format for
higher order logic theories.

This is a standards-based approach to theories, to:

enable simple import and export between theorem prover
implementations;
reduce storage requirements by compressing theories; and
think about composability of theories.
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Tactic Proof Scripts

Porting theories between higher order logic theorem provers is
currently a painful process of editing scripts that call proof tactics:

Code (Typical HOL Light tactic script proof)

let NEG_IS_ZERO = prove
(‘!x. neg x = Zero <=> x = Zero‘,
MATCH_MP_TAC N_INDUCT THEN
REWRITE_TAC [neg_def] THEN
MESON_TAC [N_DISTINCT]);;

Difficulty: Every theorem prover implements a subtley different
set of tactics, the behaviour of which evolves across versions.
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Theorem Provers in the LCF Design

Higher order logic theorem provers are just functional
programs, where one of the modules is the logical kernel:

Code (The opentheory logical kernel)

type thm

(* refl t yields the theorem |- t = t *)
val refl : Term.term -> thm

[...10 other primitive inferences...]

Key Idea: The thm type is abstract, so the only way to
create a theorem is to use the primitive inferences of the logic.

Tactics and other proof procedures must eventually expand to
primitive inferences.
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Compiled Theories

Approach: Instead of storing the source tactic script, store a
compiled version of the theory by fully expanding the tactics
to a primitive inference proof.

Benefit: The logic will never change, so the compiled theories
will never suffer from bit rot.

Whereas tactic scripts can break every time the tactics change.

Benefit: The compiled proof need only store the inferences
that contribute to the proof.

Whereas tactic scripts often explore many dead ends before
finding a valid proof.

Drawback: Once the theory has been compiled to a proof, it
is difficult to change it.

So theories should be compiled only when they are stable
enough to be archived.
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Representing Proofs

Not all higher order theorem provers build explicit proof
objects for theorems.

However, every tactic in the theorem prover is a function that
calls lower-level tactics, all the way down to the primitive
inference functions in the logical kernel.

Thus the proof of a theorem in a higher order logic theorem
prover can be represented as a call tree in a functional
programming language.

The OpenTheory article format is a direct representation of
this call tree.
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Proofs as Stack-Based Programs

Articles represent call trees in functional programming
languages as programs in a stack-based language.

The theorem prover interprets this stack-based program, and
simulates the primitive inference calls that are described by
the stack-based program.

When the theorem prover has finished interpreting the
program, it will have simulated the entire proof of the
theorems exported by the article.

The stack-based program representation of proofs is easy to
read, and easy to generate by instrumenting the inference
functions in the theorem prover.
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Stack Operations

Articles are programs in a stack-based language.

They are a sequence of commands, one per line.

Most commands build up data objects to be used as function
arguments or return values.

Definition (The “var” article command)
var

Pop a type ty; pop a name n; push a variable
with name n and type ty.

Stack: Before: Otype ty :: Oname n :: stack
After: Oterm (mk_var (n,ty)) :: stack
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Article Data Objects

Different kinds of data appear in call trees representing proofs, and
these are defined in the article format.

Definition (Article data objects)

datatype object =

Oerror (* An error value *)

| Oint of int (* A number *)

| Oname of string (* A name *)

| Olist of object list (* A list (or tuple) of objects *)

| Otype of type (* A higher order logic type *)

| Oterm of term (* A higher order logic term *)

| Othm of thm (* A higher order logic theorem *)

| Ocall of name (* A special object marking a

function call *)
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Call Stack Operations

Definition (The “call” and “return” article commands)

call

Pop a name n; pop an object i; push the function call

marker Ocall n; push the input value i.

Stack: Before: Oname n :: i :: stack

After: i :: Ocall n :: stack

return

Pop a name n; pop an object r; pop objects from the stack

up to and including the top function call marker Ocall n;

push the return value r.

Stack: Before: Oname n :: r :: ... :: Ocall n :: stack

After: r :: stack
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Article Exports

In addition to the stack, programs reading articles also maintain a
list of theorems that will be exported from theory.

Definition (The “save” article command)
save

Pop a theorem th; add th to the list of
theorems that the article will export.

Stack: Before: Othm th :: stack
After: stack

Export list: Before: saved
After: saved @ [th]
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Constructing Theorems

The thm command constructs a theorem with given hypotheses
and conclusion.

Definition (The “thm” article command)

thm

Pop a term c; pop a list of terms h;

push the theorem h |- c with hypothesis h and conclusion c.

Stack: Before: Oterm c :: Olist [Oterm h1, ..., Oterm hn] :: stack

After: Othm ([h1, ..., hn] |- c) :: stack

But wait! Theorems can’t be constructed from their hypotheses
and conclusion, they must be proved using primitive inferences.
What’s going on?
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Constructing Theorems (The Real Story)

The thm just gives the specification for the theorem to be
constructed—it doesn’t say how it should be proved.

Theorems are proved by the following methods (in order of
preference):

1 The theorem might already be on the export list of the theory.
2 The current function might be a primitive inference rule, in

which case the result theorem is proved by simulating the
inference using the input arguments.

3 The theorem might be inside a data object on the stack.
4 If none of the previous rules apply, assert the theorem as an

axiom and add it to the import list of the article.
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The Dictionary

In addition to the stack and the export list, programs reading
articles also maintain a dictionary mapping integers to data
objects.

Data objects need only be constructed once, saved in the
dictionary and then used multiple times.

Without the dictionary, data objects with a great deal of
memory sharing could expand exponentially in articles.
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Adding to the Dictionary

Definition (The “def” article command)

def
Pop a number k; peek an object x; update the
dictionary so that key k maps to object x.

Stack: Before: Oint k :: x :: stack
After: x :: stack

Dictionary: Before: dict
After: dict[k |-> x]
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Reading the Dictionary

Definition (The “ref” article command)

ref
Pop a number k; look up key k in the dictionary
to get an object x; push the object x.

Stack: Before: Oint k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict
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Removing from the Dictionary

Definition (The “remove” article command)
remove

Pop a number k; look up key k in the dictionary
to get an object x; push the object x; delete
the entry for key k from the dictionary.

Stack: Before: Oint k :: stack
After: dict[k] :: stack

Dictionary: Before: dict
After: dict[entry k deleted]
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Generating Articles from HOL Light

We instrumented HOL Light v2.20 to emit articles for each of
the theory files in the distribution.

Each primitive inference (and selected other functions)
generates call and return article commands with the
argument and return values.

Exceptions are trapped and an Oerror return value is
generated, and then the exception is re-raised.

The theorems left on the stack are treated as the export list of
the article.

For each article a dictionary is maintained of all types and
terms constructed.
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HOL Light Articles

HOL Light article (Kb) gzip’ed
theory article (Kb)
num 1,820 227
arith 27,469 2,884
wf 29,277 3,222
calc num 3,922 374
normalizer 2,845 300
grobner 2,417 257
ind-types 10,625 1,274
list 12,368 1,485
realax 23,628 2,519
calc int 2,844 314
realarith 16,275 1,326
real 30,031 3,179
calc rat 2,555 289
int 40,617 3,465
sets 168,586 17,514
iter 207,324 17,557
cart 20,351 2,076
define 82,185 8,157
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Compressing Articles

The articles generated by HOL Light are compressed by the
following post-processing steps:

1 Adding explicit save commands to the exported theorems,
instead of leaving them on the stack.

2 Not adding data objects to the dictionary that are only used
once.

3 Removing data objects from the dictionary on their last use.
4 Eliminating all function calls where the result does not

contribute to the exported theorems.

Trick: By storing dependency pointers with each data object,
the garbage collector takes care of dead inference elimination
automatically as the article is read.
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Compressing the HOL Light Articles

HOL Light article comp. comp. gzip’ed gzip’ed comp.
theory (Kb) (Kb) ratio article comp. ratio

(Kb) (Kb)
num 1,820 813 56% 227 113 51%
arith 27,469 7,548 73% 2,884 1,015 65%
wf 29,277 6,330 79% 3,222 861 74%
calc num 3,922 1,570 60% 374 203 46%
normalizer 2,845 688 76% 300 92 70%
grobner 2,417 748 70% 257 103 60%
ind-types 10,625 4,422 59% 1,274 599 53%
list 12,368 4,870 61% 1,485 673 55%
realax 23,628 7,989 67% 2,519 1,070 58%
calc int 2,844 861 70% 314 119 63%
realarith 16,275 4,684 72% 1,326 589 56%
real 30,031 9,346 69% 3,179 1,217 62%
calc rat 2,555 1,166 55% 289 157 46%
int 40,617 9,546 77% 3,465 1,249 64%
sets 168,586 30,315 83% 17,514 4,048 77%
iter 207,324 32,422 85% 17,557 4,199 77%
cart 20,351 3,632 83% 2,076 495 77%
define 82,185 16,409 81% 8,157 2,175 74%
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HOL Light Article Summary

Concatenating all the HOL Light theories in turn generates an
article exporting 129,888 theorems, and depending on 3 axioms:

Axioms (The HOL Light axioms)

types: bool fun ind
consts: ∀ ∧ = =⇒ ∃ ONE ONE ONTO select ¬
thms: ` ∀t. (λx . t x) = t
` ∀P, x . P x =⇒ P (select P)
` ∃f . ONE ONE f ∧ ¬ONTO f
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Article Summaries

Until now we have been focused on the details of the proof
format.

Now let us focus on the interface to the article, called
summaries, Γ ` ∆:

Γ: The set of axioms that the theory depends on.
∆: The set of theorems that the theory exports.

Reducing the export set is always safe:

filter∆′ (Γ ` ∆) = Γ ` (∆ ∩∆′)

Also, stack-based languages are concatenative:

(Γ1 ` ∆1) · (Γ2 ` ∆2) = Γ1 ∪ (Γ2 −∆1) ` ∆1 ∪∆2
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Mapping Constant Names

Definition (The “const” article command)

const
Pop a type ty; pop a name n; push a constant
with name (interpret_const_name n) and type ty.

Stack: Before: Otype ty :: Oname n :: stack
After: Oterm (mk_const (n’,ty)) :: stack

where n’ = interpret_const_name n

The interpret const name function is present to handle the
situation where theorem provers have given the same constant
different names.
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Theory Interpretations

The interpret const name and interpret type name
functions can be used creatively to simulate theory
interpretations.

The same article can be re-run with different interpretations
to bind the dependencies to different theorems in the local
context, and generate different exports.

This provides a limited theory substitution operator.

(Γ ` ∆)σ = Γσ ` ∆σ
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Theory Operations

We have presented three theory operations:
1 reducing the exported theorems;
2 concatenation;
3 interpreting constant and type names.

Theory Engineering Challenge: Design theories that can be
applied in many contexts using the above operations.

From this perspective, theories are like ML functors, which
map modules to modules:

ML module ∼ HOL theory
types ∼ types

values ∼ constants
type judgements ∼ theorems
implementation ∼ proof
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Example I

Code (A Haskell type class instance)

instance Ord a => Ord [a] where
[] <= _ = True
_:_ <= [] = False
x:xs <= y:ys = if x <= y then

if y <= x then xs <= ys else True
else False

What’s missing here?

Missing Dependency: Require <= to be a total order on elements.

Missing Export: Can guarantee that <= is a total order on
elements.
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Example I — Adding Properties to Type Classes

Create a theory containing an uninterpreted type T and constant
cmp, and an axiom that cmp is a total order over T.

Axioms (Type class example theory)

types:
T

consts:
cmp total_order

thms:
|- total_order cmp

When the theory is applied, the type T and constant cmp will be
interpreted to a concrete type and total order.
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Example I — Adding Properties to Type Classes

Theory (Type class example theory)

consts:
cmp_list

thms:
|- cmp_list NIL l2 = T /\

cmp_list (CONS h1 t1) NIL = F /\
cmp_list (CONS h1 t1) (CONS h2 t2) =
if cmp h1 h2 then
if cmp h2 h1 then cmp_list t1 t2 else T

else F
|- total_order cmp_list

We retain the definition of cmp list from the Haskell type class
instance, but we also know that it is a total order (if cmp is).
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Example II

Harrison’s thesis showed how to mechanize the construction
of the real numbers using the positive route:

Z+  Q+  R+

After this step there remain three similar constructions:

Z+  Z Q+  Q R+  R

This is a perfect application for theory interpretation.
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Example II — Defining Negative Number Types

Axioms (Negative number example theory)

types:

P

consts:

leP addP subP multP

thms:

|- !x. leP x x

|- !x y. leP x y /\ leP y x ==> x = y

|- !x y z. leP x y /\ leP y z ==> leP x z

|- !x y. leP x y \/ leP y x

|- !x y. addP x y = addP y x

|- !x y z. addP (addP x y) z = addP x (addP y z)

|- !x x’ y y’.

leP x x’ /\ leP y y’ ==> leP (addP x y) (addP x’ y’)

|- !x y. ~leP (addP x y) x

|- !x y. ~leP y x ==> addP x (subP y x) = y

|- !x y. multP x y = multP y x

|- !x y z. multP (multP x y) z = multP x (multP y z)
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Example II — Defining Negative Number Types

Theory (Negative number example theory)

types:

N

consts:

zero le add neg sub mult inject

thms:

|- !x. le x x

|- !x y. le x y /\ le y x ==> x = y

|- !x y z. le x y /\ le y z ==> le x z

|- !x y. le x y \/ le y x

|- !x. add zero x = x

|- !x. add x zero = x

|- !x y. add x y = add y x

|- !x y z. add (add x y) z = add x (add y z)

|- !x y z. add x y = add x z = (y = z)

|- !x y z. le (add x y) (add x z) = le y z

|- !x x’ y y’.

le x x’ /\ le y y’ ==> le (add x y) (add x’ y’)
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Example II — Defining Negative Number Types

Theory (Negative number example theory)

more thms:

|- neg zero = zero

|- !x. neg x = zero = (x = zero)

|- !x. neg (neg x) = x

|- !x. add x (neg x) = zero

|- !x. add (neg x) x = zero

|- sub x y = add x (neg y)

|- !x y. add x (sub y x) = y

|- !x. mult zero x = zero

|- !x. mult x zero = zero

|- !x y. mult x y = mult y x

|- !x y z. mult (mult x y) z = mult x (mult y z)
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Example II — Defining Negative Number Types

Theory (Negative number example theory)

even more thms:

|- !x y. leP x y = le (inject x) (inject y)

|- !x y. inject (addP x y) = add (inject x) (inject y)

|- !x y.

~leP x y ==>

inject (subP x y) = sub (inject x) (inject y)

|- !x y. inject (multP x y) = mult (inject x) (inject y)

|- !x. ~(inject x = zero)

|- !x y. ~(inject x = neg (inject y))

|- !p.

(!x. p (inject x)) /\ p zero /\

(!x. p (neg (inject x))) ==> !x. p x
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Summary

This talk has presented the OpenTheory project, which aims
to apply software engineering principles to theories of higher
order logic.

The article format for higher order logic theories is now stable.

The next challenge: installing and upgrading theories with
automatic dependency management.

The project web page:

http://gilith.com/research/opentheory
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