
Predicate Subtyping with Predicate Sets 1

Predicate Subtyping

with

Predicate Sets

Joe Hurd

University of Cambridge

1. Motivation

2. Predicate Sets

3. Subtype Checking

4. Applications

5. Conclusion

6. Future Work

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 2

Motivation

Predicate subtyping allows the creation of a new

subtype corresponding to an arbitrary predicate

P : α→ B, where elements of the new subtype are

also elements of α.

They allow (much) more information to be

encoded in types, which is useful for expressing

side conditions of theorems:

∀x : R 6=0. x/x = 1

The predicate subtype R 6=0 of R corresponds to

the predicate λ r. r 6= 0.

Predicate subtypes are powerful enough to express

dependent types; and type-checking specifications

using predicate subtypes allows more consistency

checks to be made, thus catching errors earlier.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 3

Motivation

However, there are some downsides: Predicate

subtypes complicate the logical kernel, which has

demonstrated itself in the higher number of

soundness bugs in PVS relative to HOL. Also,

type-checking becomes undecidable, so

(potentially human) theorem-proving effort is

required before a term can be accepted into the

system.

In this experiment, we stick to the HOL logic,

and see if we can gain the benefits of predicate

subtyping by reasoning with predicate sets.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 4

Predicate Sets

Predicate sets are an encoding of sets in

higher-order logic, and all the usual set operations

can be defined on them (e.g., ∈, ∪ and image).

Here are some examples of predicate sets:

nzreal = {x : R | x 6= 0}
posreal = {x : R | 0 < x}

nnegreal = {x : R | 0 ≤ x}
real = {x : R | >}

∀n. lenum n = {m : N | m ≤ n}
∀n. nlist n = {l : α∗. | length l = n}
∀ p. list p = {l : α∗. | ∀x. mem x l⇒ x ∈ p}

We are going to reason with such sets to simulate

predicate subtyping, and will call them subtypes.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 5

Predicate Sets

Look again at the predicate set list:

∀ p. list p = {l : α∗. | ∀x. mem x l⇒ x ∈ p}

We can similarly define a predicate set for any

datatype, e.g.,

∀ p, q. pair p q = {x : α× β | fst x ∈ p ∧ snd x ∈ q}

We call these subtype constructors. Automatically

making these definitions is an example of

polytypic programming, and could be incorporated

into the existing HOL datatype package.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 6

Predicate Sets

We can define a subtype constructor for function

spaces:

∀ p, q. p ·→ q = {f : α→ β | ∀x ∈ p. f(x) ∈ q}

For example:

(λx. x2) ∈ nzreal
·→ posreal

A more general definition is the dependent

subtype constructor for function spaces:

∀ p, q. p ?→ q = {f : α→ β | ∀x ∈ p. f(x) ∈ q(x)}

For example:

− ∈ num
?→ (λn. lenum n

·→ lenum n)

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 7

Subtype Checking

We say that a term t has subtype p if the HOL

theorem ` t ∈ p is valid. In PVS this would take

the form of a type judgement (made by the type

system).

We can automatically derive (some) subtypes for

terms, using an algorithm similar to Milner’s type

inference algorithm. Subtype rules like the

following keep track of the logical context:

` ∀ c, a, b, p.
(c ∈ bool) ∧
(c⇒ a ∈ p) ∧
(¬c⇒ b ∈ p) ⇒
(if c then a else b) ∈ p

But how to find the common subtype p shared by

a and b?

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 8

Subtype Checking

We implement a prover to find common subtypes

needed by the subtype rules. This is a

higher-order version of model elimination, since

we need to return multiple satisfying subtypes

(Prolog-style).

It needs to be higher-order because of some

subtype rules, for example the one for function

spaces:

` ∀ f, a, p, q.
(f ∈ p ?→ q) ∧
(a ∈ p) ⇒
f a ∈ q a

The prover works by translating the goal to

combinatory form, following a paper of Robinson

(and encouragement from John Harrison).

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 9

Subtype Checking

To be able to perform subtype checking, we also
need a dictionary of constant subtypes

` inv ∈ (nzreal
·→ nzreal ∩ posreal

·→ posreal ∩ . . .)

` sqrt ∈ (nnegreal
·→ nnegreal ∩ posreal

·→ posreal)

` ∀ p. funpow ∈ (p
·→ p)

·→ p
·→ p

` ∀ p. [] ∈ (list p ∩ nlist 0)

` ∀ p, n.
cons ∈ p ·→ (list p ∩ nlist n)

·→ (list p ∩ nlist (suc n))

` ∀ f, p, q, n.
map ∈ (p

·→ q)
·→ (list p ∩ nlist n)

·→ (list q ∩ nlist n)

and a few subtype judgements for the higher-order
prover to use

` posreal ⊂ nzreal

` ∀ p, q. p ⊂ q ⇒ list p ⊂ list q

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 10

Subtype Checking

Consider the following (faulty) specification:

` (inv x) ∗ x = 1

When the subtype checker produces an error, we

can fix it like this:

` x ∈ nzreal ⇒ (inv x) ∗ x = 1

Or we can attempt to subvert the subtype checker

in a number of ways:

` inv x ∈ nzreal ⇒ (inv x) ∗ x = 1

` inv ∈ real
·→ nzreal ⇒ (inv x) ∗ x = 1

` inv ∈ real
·→ real ⇒ (inv x) ∗ x = 1

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 11

Subtype Checking

What went wrong?

The problem is neatly expressed in the following

HOL theorem:

` ∀ f : α→ β. f ∈ Uα ·→ Uβ

This is a simple reflection of the fact that in HOL

every function is total, or equivalently that every

function can be applied to any argument. In the

face of this, our attempts to restrict the domain

of any function (such as inv) are ultimately futile.

Essentially the PVS logic implements a logic of

partial functions, but by insisting that a type is

available for every function’s domain can avoid

awkward questions of definedness.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 12

Applications

We can package the subtype checker up as a HOL

tactic that can solve some interesting set

membership goals, for example:

` map inv (cons (−1) (map sqrt [3, 1])) ∈ list nzreal

` (λx ∈ negreal. funpow inv n x) ∈ negreal
·→ negreal

We use this tactic as a condition prover in a

contextual rewriter, allowing us to use the

following example rewrites:

` ∀x ∈ nzreal. x/x = 1

` ∀n. ∀m ∈ lenum n. m+ (n−m) = n

` ∀n ∈ nznum. n mod n = 0

` ∀ s ∈ finite. ∀ f ∈ injection s. |image f s| = |s|

The first of these enables us to straightforwardly

prove goals such as 3/3 = 5/5.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 13

Applications

We have applied these tools to the formalization

of a body of group theory, defining subtypes such

as:

` ∗ ∈ group
?→ (λG. |G| ·→ |G| ·→ |G|)

` e ∈ group
?→ (λG. |G|)

` ·−1 ∈ group
?→ (λG. |G| ·→ |G|)

Here |G| refers to the carrier set of the group G.

Merely proving these subtype theorems and

entering these into our dictionary allow us to

derive group membership facts of many subterms.

We also add some subtype judgements:

∀G ∈ group. ∀H ∈ subgroup G. |H| ⊂ |G|

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 14

Applications

We can then use rewrites with group membership

conditions:

` ∀G ∈ group. ∀ g ∈ |G|. eG ∗G g = g

` ∀G ∈ group. ∀ g, h ∈ |G|. (g ∗G h = h) = (g = eG)

` ∀G ∈ group. ∀H ∈ subgroup G. eH = eG

` ∀G ∈ group. ∀H ∈ subgroup G. ∀ g, h ∈ |H|.
g ∗H h = g ∗G h

These allow complicated terms such asa

((h1 ∗H eH) ∗H h2) ∗G g = eG ∗G g

to be rewritten to

((h1 ∗G eG) ∗G h2) = eG

using the contextual rewriter and subtype prover

in concert.

awhereG ∈ group, H ∈ subgroup G, g ∈ |G|, h1, h2 ∈ |H|

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 15

Conclusions

This approach is effective at providing simple

knowledge about subterms that come in useful

during rewriting.

It is also useful for debugging specifications,

though due to the HOL logic cannot be totally

guaranteed (as it is in PVS).

When could such a guarantee be useful? Claim

only when there will be no subsequent verification

(since this would expose any such problem).

So our tools should be seen as an aid to formal

verification, and their uses in proving conditions

and debugging specifications do just that.

Joe Hurd University of Cambridge

Predicate Subtyping with Predicate Sets 16

Future Work

• Larger case study involving arithmetic.

Currently working on computational number

theory, containing plenty of group theory

(which is relatively easy for subtyping) and

number theory (which is hard).

• Must improve the subtype infrastructure (it

runs rather slowly), particularly the

higher-order prover.

• Subtype inference for particular variables:

this does not seem to be straightforward but

would ease the burden of proving subtype

theorems for every new constant.

• Mike Gordon suggested using subtypes to

reformulate Hoare logic. If [P]C[Q], then the

program C is a function having subtype

P
·→ Q.

Joe Hurd University of Cambridge

