Verifying Relative Error Bounds Using Symbolic Simulation

Jesse Bingham & Joe Leslie-Hurd

Intel Corporation

CAV Sunday 20 July 2014

Presented by Alan Hu (U. British Columbia)

Motivating Example

- \circ RCP14 is a floating point instruction that computes an approximate reciprocal.
- \bullet The spec requires that for every input x, the relative error of the hardware output $h(x)$ is at most 2^{-14} .

$$
\frac{|h(x) - 1/x|}{|1/x|} < 2^{-14}
$$

- \bullet In general, if f is a mathematical function, we write $h(x) \approx_{p} f(x)$ to indicate that the hardware result $h(x)$ approximates $f(x)$ within relative error 2^{-p}
- \bullet Floating point hardware typically has a deterministic spec $$ each input has exactly one correct answer. Our spec is not of this form, hence existing verification flows cannot be used.

Our Formal Verification Flow

- **O** Given symbolic input x, compute $h(x)$ via symbolic simulation.
- 2 Prove a meta-theorem that reduces $h(x) \approx_p f(x)$ to symbolic integer reasoning of the form

$$
B \;\; < \;\; \prod_{i=1}^n M_i
$$

where \iff is either \lt or \gt , B is a concrete integer, and M_1, \ldots, M_n are symbolic integers.

3 Use customized algorithms to decide the resulting symbolic integer product inequality.

Talk Plan

1 [Reducing to Symbolic Integer Reasoning](#page-4-0)

2 [Deciding Symbolic Product Inequalities](#page-7-0)

3 [Experiments](#page-10-0)

Approximate Reciprocal Verification

- Given an input x , symbolically simulate the hardware to compute $h(x)$, an approximation to $1/x$.
- \bullet x and $h(x)$ are symbolic floating point values.
	- The real number represented by x is

$$
\frac{s_{x}m_{x}2^{e_{x}}}{2^{\ell}}
$$

•
$$
s_x = \pm 1
$$
 is the sign.

- $m_x \in [2^{\ell}, 2^{\ell+1})$ is the mantissa.
- $e_x \in [e_{min}, e_{max}]$ is the exponent.
- Verification Task: Check $h(x) \approx_{p} 1/x$.
	- i.e., the relative error of $h(x)$ is within 2^{-p} of $1/x$

Reducing Approximate Reciprocal to Integer Reasoning

We reduce the verification task to integers like so:

$$
h(x) \approx_{p} 1/x
$$

\n
$$
\iff |h(x) - 1/x| / |1/x| < 2^{-p}
$$

\n
$$
\iff s_{x} = s_{h(x)} \land (1)
$$

\n
$$
-2 \le e_{x} + e_{h(x)} \le 0 \land (2)
$$

\n
$$
2^{2\ell+2}(1 - 2^{-p}) < m_{x}m_{h(x)}2^{e_{x} + e_{h(x)} + 2} < 2^{2\ell+2}(1 + 2^{-p})
$$
 (3)

The final conjunction breaks down as follows:

- **1** The output sign must be the same as the input sign.
- **2** The output exponent must be equal to or one less than the negated input exponent.
- **3** The output mantissa must satisfy the two inequalities above.
	- Since $p \le 2\ell + 2$, these are symbolic integer inequalities.

Reducing Other Approximate Instructions

- The \mathtt{RSQRT} family of instructions approximate $1/$ √ x.
	- This reduction is a straightforward modification of the reduction for RCP.
- The EXP2 family of instructions approximate 2^x .
	- This reduction uses a novel technique based on iterated square-roots of the constant 2.
- The details of all our reductions are in the paper, but in each case the result has the form

$$
B \;\; < \;\; \prod_{i=1}^n M_i
$$

where \iff is either \lt or \gt , B is a concrete integer, and M_1, \ldots, M_n are symbolic integers.

Hardest Proof Obligation: Product Inequalities

• We have reduced checking $h(x) \approx_{14} 1/x$ to

$$
L \; < \; m_x m_{h(x)} 2^{e_x+e_{h(x)}+2} \; < \; U
$$

where L and U are constant integers

- For the other instructions, we get similar inequalities.
- Note $2^{e_x+e_{h(x)}+2} \in \{1,2,4\}.$
- Deciding these inequalities by explicitly performing the symbolic integer multiplication $m_\times m_{h(\chi)}$ is prohibitively expensive.
- We developed a suite of algorithms that avoid this blow-up by only approximating the product.

Algorithmic Framework

- Let $\Pi = \prod_{i=1}^n M_i$; we wish to establish $L < \Pi$
- Common theme: compute sequence of approximations a_0, a_1, \ldots to Π , where $a_i \le a_{i+1} \le \Pi$ for all $i \ge 0$.
- If we reach an *i* such that $L < a_i$, we have clearly established $l < \square$
- Two optimizations
	- Replace each a_i with $\mathbf{ite}(L < a_i, 0, a_i)$; BDD complexity is restricted to "space" wherein the inequality is yet-to-be proven
	- Replace each a_i with $truncL_t(a) = 2^t \lfloor a2^{-t} \rfloor$; e.g. zero out t lower order "bits" (t guessed by user)

The "Partial Product Summation" algorithm for $B < xy$

1: function PP_B OUND_LOWER (B, x, y) 2: $a := 0$ $\triangleright B, x, y$ and a are symbolic naturals 3 $sat := false$. \triangleright sat is a BDD 4: **for** $i := r$ **downto** 0 **do** r is "bit width" of y 5: $a := a + y_i x 2^{i}$ 6: $sat := sat \vee B < a$ 7: **if** sat = True **then** \triangleright if sat is tautological we're done 8: return True $9:$ end if 10: $a := \text{ite}(sat, 0, a)$ \triangleright Sat Space Restriction 11: $a := \text{truncL}_{t}(a)$ \triangleright Truncation 12: end for 13: return sat 14: end function

Case Studies

- 12 distinct instructions verified
- RCP and RSQRT: 5 flavours each, involving single (SP, 32 bit) or double (DP, 64 bit) -precision floats, with relative errors 2^{-11} , 2^{-14} , and 2^{-28}
	- 2⁻¹⁴ flavors support denormal inputs and outputs; handling these was simple in our framework (see paper for details)
- EXP2: two flavors that output SP or DP, both take 32-bit fixed point input; relative error is 2^{-23}
- • Case-splitting required for more challenging instructions
	- Designs all based on Look-up-tables (LUT); case splits held constant some or all input bits used in LUT index.
	- embarrassingly parallelizable, ran many cases concurrently to reduce wall clock time

Results

 1 Wall clock just over 2 days

Jesse Bingham & Joe Leslie-Hurd [Verifying Relative Error Bounds Using Symbolic Simulation](#page-0-0) 15 / 19

Summary

- A new technique for verifying approximate floating point instructions, integrated with symbolic simulation of RTL.
- Based on reducing the approximate spec to an integer problem which can be solved by symbolic computation techniques.
- Used to formally verify the RCP, RSQRT and EXP2 family of instructions for a next-generation $Intel^{\circledR}$ processor.
- EXP2 never done before; [Sawada 2010] handles some RCP and RSQRT instructions using ACL2, our proofs run faster however.
- Please get in touch if you are interested in finding out more

<jesse.d.bingham@intel.com> <joe.leslie-hurd@intel.com>

Reducing Floating Point Problems to Integers

- Reducing floating point problems to integers is a well-known technique.
- Our goal is to make it easier to perform a symbolic computation.
- Another application is to generate hard examples to test rounding modes of floating point units:²

$$
\sqrt{16777210 \times 2^{24}} = 16777212.9999997...
$$

 $10873622\times 2^{23} = 9550631.0000007\dots$

²Michael Parks. Number-theoretic test generation for directed rounding. IEEE Transactions on Computers, 49(7):651–658, 2000.