
Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Verifying Relative Error Bounds Using Symbolic
Simulation

Jesse Bingham & Joe Leslie-Hurd

Intel Corporation

CAV
Sunday 20 July 2014

Presented by Alan Hu (U. British Columbia)

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 1 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Motivating Example

RCP14 is a floating point instruction that computes an
approximate reciprocal.

The spec requires that for every input x , the relative error of
the hardware output h(x) is at most 2−14:

|h(x)− 1/x |
|1/x |

< 2−14

In general, if f is a mathematical function, we write
h(x) ≈p f (x) to indicate that the hardware result h(x)
approximates f (x) within relative error 2−p

Floating point hardware typically has a deterministic spec –
each input has exactly one correct answer. Our spec is not of
this form, hence existing verification flows cannot be used.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 2 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Our Formal Verification Flow

1 Given symbolic input x , compute h(x) via symbolic simulation.

2 Prove a meta-theorem that reduces h(x) ≈p f (x) to symbolic
integer reasoning of the form

B <>

n∏
i=1

Mi

where <> is either < or >, B is a concrete integer, and
M1, . . . ,Mn are symbolic integers.

3 Use customized algorithms to decide the resulting symbolic
integer product inequality.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 3 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Talk Plan

1 Reducing to Symbolic Integer Reasoning

2 Deciding Symbolic Product Inequalities

3 Experiments

4 Summary

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 4 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Approximate Reciprocal Verification

Given an input x , symbolically simulate the hardware to
compute h(x), an approximation to 1/x .

x and h(x) are symbolic floating point values.

The real number represented by x is

sxmx2ex

2`

sx = ±1 is the sign.
mx ∈ [2`, 2`+1) is the mantissa.
ex ∈ [emin, emax] is the exponent.

Verification Task: Check h(x) ≈p 1/x .

i.e., the relative error of h(x) is within 2−p of 1/x

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 6 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Reducing Approximate Reciprocal to Integer Reasoning

We reduce the verification task to integers like so:

h(x) ≈p 1/x

⇐⇒ |h(x)− 1/x | / |1/x | < 2−p

⇐⇒ sx = sh(x) ∧ (1)

−2 ≤ ex + eh(x) ≤ 0 ∧ (2)

22`+2(1− 2−p) < mxmh(x)2
ex+eh(x)+2 < 22`+2(1 + 2−p) (3)

The final conjunction breaks down as follows:

1 The output sign must be the same as the input sign.

2 The output exponent must be equal to or one less than the
negated input exponent.

3 The output mantissa must satisfy the two inequalities above.

Since p ≤ 2` + 2, these are symbolic integer inequalities.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 7 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Reducing Other Approximate Instructions

The RSQRT family of instructions approximate 1/
√

x .

This reduction is a straightforward modification of the
reduction for RCP.

The EXP2 family of instructions approximate 2x .

This reduction uses a novel technique based on iterated
square-roots of the constant 2.

The details of all our reductions are in the paper, but in each
case the result has the form

B <>
n∏

i=1

Mi

where <> is either < or >, B is a concrete integer, and
M1, . . . ,Mn are symbolic integers.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 8 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Hardest Proof Obligation: Product Inequalities

We have reduced checking h(x) ≈14 1/x to

L < mxmh(x)2
ex+eh(x)+2 < U

where L and U are constant integers

For the other instructions, we get similar inequalities.
Note 2ex+eh(x)+2 ∈ {1, 2, 4}.

Deciding these inequalities by explicitly performing the
symbolic integer multiplication mxmh(x) is prohibitively
expensive.

We developed a suite of algorithms that avoid this blow-up by
only approximating the product.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 10 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Algorithmic Framework

Let Π =
∏n

i=1 Mi ; we wish to establish L < Π

Common theme: compute sequence of approximations
a0, a1, . . . to Π, where ai ≤ ai+1 ≤ Π for all i ≥ 0.

If we reach an i such that L < ai , we have clearly established
L < Π

Two optimizations

Replace each ai with ite(L < ai , 0, ai); BDD complexity is
restricted to “space” wherein the inequality is yet-to-be proven
Replace each ai with truncLt(a) = 2t ba2−tc; e.g. zero out t
lower order “bits” (t guessed by user)

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 11 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

The “Partial Product Summation” algorithm for B < xy

1: function PP Bound Lower(B, x , y)
2: a := 0 . B, x , y and a are symbolic naturals
3: sat := false . sat is a BDD
4: for i := r downto 0 do . r is “bit width” of y
5: a := a + yix2i

6: sat := sat ∨ B < a
7: if sat = True then . if sat is tautological we’re done
8: return True
9: end if

10: a := ite(sat, 0, a) . Sat Space Restriction
11: a := truncLt(a) . Truncation
12: end for
13: return sat
14: end function

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 12 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Case Studies

12 distinct instructions verified

RCP and RSQRT: 5 flavours each, involving single (SP, 32 bit)
or double (DP, 64 bit) -precision floats, with relative errors
2−11, 2−14, and 2−28

2−14 flavors support denormal inputs and outputs; handling
these was simple in our framework (see paper for details)

EXP2: two flavors that output SP or DP, both take 32-bit
fixed point input; relative error is 2−23

Case-splitting required for more challenging instructions

Designs all based on Look-up-tables (LUT); case splits held
constant some or all input bits used in LUT index.
embarrassingly parallelizable, ran many cases concurrently to
reduce wall clock time

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 14 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Results

Op. Tot. Time Spec. Time. Mem. Alg. Case split

RCP 11S 58 3 1.8 P No
RCP 14S 103 49 1.8 P No
RCP 14D 135 51 1.8 P No
RCP 28S 14,972 7,038 17.4 E No
RCP 28D 2.7 days 1.3 days 3.6 E 512-way

RSQRT 11S 68 4 1.8 P No
RSQRT 14S 124 69 1.8 P No
RSQRT 14D 139 55 1.8 P No
RSQRT 28S 18,301 13,173 6.0 E 16-way
RSQRT 28D 22.7 days1 16.7 days 9.0 E 1,024-way

EXP2 23S 72,759 63,428 2.9 B 128-way
EXP2 23D 59,706 51,152 2.8 B 128-way

1Wall clock just over 2 days
Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 15 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Summary

A new technique for verifying approximate floating point
instructions, integrated with symbolic simulation of RTL.

Based on reducing the approximate spec to an integer problem
which can be solved by symbolic computation techniques.

Used to formally verify the RCP, RSQRT and EXP2 family of
instructions for a next-generation Intel R© processor.

EXP2 never done before; [Sawada 2010] handles some RCP and
RSQRT instructions using ACL2, our proofs run faster however.

Please get in touch if you are interested in finding out more

jesse.d.bingham@intel.com

joe.leslie-hurd@intel.com

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 17 / 19

jesse.d.bingham@intel.com
joe.leslie-hurd@intel.com

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Backup

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 18 / 19

Reducing to Symbolic Integer Reasoning Deciding Symbolic Product Inequalities Experiments Summary

Reducing Floating Point Problems to Integers

Reducing floating point problems to integers is a well-known
technique.

Our goal is to make it easier to perform a symbolic
computation.

Another application is to generate hard examples to test
rounding modes of floating point units:2√

16777210× 224 = 16777212.9999997 . . .√
10873622× 223 = 9550631.0000007 . . .

2Michael Parks. Number-theoretic test generation for directed rounding.
IEEE Transactions on Computers, 49(7):651–658, 2000.

Jesse Bingham & Joe Leslie-Hurd Verifying Relative Error Bounds Using Symbolic Simulation 19 / 19

	Reducing to Symbolic Integer Reasoning
	Deciding Symbolic Product Inequalities
	Experiments
	Summary

