Verifying Relative Error Bounds Using Symbolic Simulation

Jesse Bingham & Joe Leslie-Hurd

Intel Corporation

CAV Sunday 20 July 2014

Presented by Alan Hu (U. British Columbia)

Motivating Example

- RCP14 is a floating point instruction that computes an approximate reciprocal.
- The spec requires that for every input x, the relative error of the hardware output h(x) is at most 2^{-14} :

$$\frac{|h(x) - 1/x|}{|1/x|} < 2^{-14}$$

- In general, if f is a mathematical function, we write $h(x) \approx_p f(x)$ to indicate that the hardware result h(x) approximates f(x) within relative error 2^{-p}
- Floating point hardware typically has a deterministic spec each input has exactly one correct answer. Our spec is not of this form, hence existing verification flows cannot be used.

Our Formal Verification Flow

- **(**) Given symbolic input x, compute h(x) via symbolic simulation.
- Prove a meta-theorem that reduces h(x) ≈_p f(x) to symbolic integer reasoning of the form

$$B \iff \prod_{i=1}^n M_i$$

where $\langle \rangle$ is either \langle or \rangle , *B* is a concrete integer, and M_1, \ldots, M_n are symbolic integers.

Use customized algorithms to decide the resulting symbolic integer product inequality.

Talk Plan

1 Reducing to Symbolic Integer Reasoning

2 Deciding Symbolic Product Inequalities

3 Experiments

Approximate Reciprocal Verification

- Given an input *x*, symbolically simulate the hardware to compute *h*(*x*), an approximation to 1/*x*.
- x and h(x) are symbolic floating point values.
 - The real number represented by x is

$$\frac{s_x m_x 2^{e_x}}{2^{\ell}}$$

•
$$s_x = \pm 1$$
 is the sign.

- $m_x \in [2^{\ell}, 2^{\ell+1})$ is the mantissa.
- $e_x \in [e_{min}, e_{max}]$ is the exponent.
- Verification Task: Check $h(x) \approx_p 1/x$.
 - i.e., the relative error of h(x) is within 2^{-p} of 1/x

Reducing Approximate Reciprocal to Integer Reasoning

We reduce the verification task to integers like so:

$$\begin{split} h(x) &\approx_{p} 1/x \\ \iff |h(x) - 1/x| / |1/x| < 2^{-p} \\ \iff s_{x} = s_{h(x)} \land (1) \\ -2 &\leq e_{x} + e_{h(x)} \leq 0 \land (2) \\ 2^{2\ell+2}(1 - 2^{-p}) < m_{x}m_{h(x)}2^{e_{x} + e_{h(x)} + 2} < 2^{2\ell+2}(1 + 2^{-p}) \end{split}$$

The final conjunction breaks down as follows:

- The output sign must be the same as the input sign.
- The output exponent must be equal to or one less than the negated input exponent.
- Solution The output mantissa must satisfy the two inequalities above.
 - Since $p \le 2\ell + 2$, these are symbolic integer inequalities.

Reducing Other Approximate Instructions

- The RSQRT family of instructions approximate $1/\sqrt{x}$.
 - This reduction is a straightforward modification of the reduction for RCP.
- The EXP2 family of instructions approximate 2^{x} .
 - This reduction uses a novel technique based on iterated square-roots of the constant 2.
- The details of all our reductions are in the paper, but in each case the result has the form

$$B \iff \prod_{i=1}^n M_i$$

where \Leftrightarrow is either < or >, B is a concrete integer, and M_1, \ldots, M_n are symbolic integers.

Hardest Proof Obligation: Product Inequalities

• We have reduced checking $h(x) \approx_{14} 1/x$ to

$$L < m_x m_{h(x)} 2^{e_x + e_{h(x)} + 2} < U$$

where L and U are constant integers

- For the other instructions, we get similar inequalities.
- Note $2^{e_x+e_{h(x)}+2} \in \{1, 2, 4\}.$
- Deciding these inequalities by explicitly performing the symbolic integer multiplication $m_x m_{h(x)}$ is prohibitively expensive.
- We developed a suite of algorithms that avoid this blow-up by only approximating the product.

Algorithmic Framework

- Let $\Pi = \prod_{i=1}^{n} M_i$; we wish to establish $L < \Pi$
- Common theme: compute sequence of approximations a_0, a_1, \ldots to Π , where $a_i \leq a_{i+1} \leq \Pi$ for all $i \geq 0$.
- If we reach an i such that $L < a_i,$ we have clearly established $L < \Pi$
- Two optimizations
 - Replace each a_i with ite(L < a_i, 0, a_i); BDD complexity is restricted to "space" wherein the inequality is yet-to-be proven
 - Replace each a_i with truncL_t(a) = 2^t ⌊a2^{-t}⌋; e.g. zero out t lower order "bits" (t guessed by user)

The "Partial Product Summation" algorithm for B < xy

1: function PP_BOUND_LOWER(B, x, y) a := 0 \triangleright B, x, y and a are symbolic naturals 2: ▷ sat is a BDD 3: sat := false4: for i := r downto 0 do \triangleright *r* is "bit width" of *y* $a := a + v_i x 2^i$ 5: sat := sat $\lor B < a$ 6· if sat = True then 7: ▷ if sat is tautological we're done 8: return True 9: end if a := ite(sat, 0, a)Sat Space Restriction 10: $a := truncL_t(a)$ Truncation 11: 12: end for 13: return sat 14: end function

Case Studies

- 12 distinct instructions verified
- RCP and RSQRT: 5 flavours each, involving single (SP, 32 bit) or double (DP, 64 bit) -precision floats, with relative errors 2^{-11} , 2^{-14} , and 2^{-28}
 - 2⁻¹⁴ flavors support denormal inputs and outputs; handling these was simple in our framework (see paper for details)
- EXP2: two flavors that output SP or DP, both take 32-bit fixed point input; relative error is 2^{-23}
- Case-splitting required for more challenging instructions
 - Designs all based on Look-up-tables (LUT); case splits held constant some or all input bits used in LUT index.
 - *embarrassingly parallelizable*, ran many cases concurrently to reduce wall clock time

Results

Op.	Tot. Time	Spec. Time.	Mem.	Alg.	Case split
RCP 11S	58	3	1.8	Р	No
RCP 14S	103	49	1.8	Р	No
RCP 14D	135	51	1.8	Р	No
RCP 28S	14,972	7,038	17.4	E	No
RCP 28D	2.7 days	1.3 days	3.6	E	512-way
RSQRT 11S	68	4	1.8	Р	No
RSQRT 14S	124	69	1.8	Р	No
RSQRT 14D	139	55	1.8	Р	No
RSQRT 28S	18,301	13,173	6.0	E	16-way
RSQRT 28D	22.7 days ¹	16.7 days	9.0	E	1,024-way
EXP2 23S	72,759	63,428	2.9	В	128-way
EXP2 23D	59,706	51,152	2.8	В	128-way

¹Wall clock just over 2 days

Summary

- A new technique for verifying approximate floating point instructions, integrated with symbolic simulation of RTL.
- Based on reducing the approximate spec to an integer problem which can be solved by symbolic computation techniques.
- Used to formally verify the RCP, RSQRT and EXP2 family of instructions for a next-generation $Intel^{(R)}$ processor.
- EXP2 never done before; [Sawada 2010] handles some RCP and RSQRT instructions using ACL2, our proofs run faster however.
- Please get in touch if you are interested in finding out more

jesse.d.bingham@intel.com joe.leslie-hurd@intel.com

Reducing Floating Point Problems to Integers

- Reducing floating point problems to integers is a well-known technique.
- Our goal is to make it easier to perform a symbolic computation.
- Another application is to generate hard examples to test rounding modes of floating point units:²
 - $\sqrt{16777210 \times 2^{24}} = 16777212.9999997...$
 - $\sqrt{10873622 \times 2^{23}} = 9550631.0000007...$

²Michael Parks. Number-theoretic test generation for directed rounding. *IEEE Transactions on Computers*, 49(7):651–658, 2000.