Mathematics of Cryptography A Guided Tour

Joe Hurd

joe@galois.com

Galois Tech Talk Tuesday 28 July 2009

Talk Plan

2 [Inside RSA](#page-9-0)

The Tour Starts Here

- This talk will give a guided tour of the mathematics underlying cryptography.
- We'll take apart a related set of public key cryptographic algorithms, to see how they work.
- Disclaimer: The algorithms are presented in their simplest form—actual systems would implement much more efficient versions.

Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol allows two people to use a public channel to set up a shared secret key:

- \bullet Alice and Bob publically agree on a large prime p and an integer x.
- **2** Alice randomly picks an integer a, and sends Bob x^a mod p .
- \bullet Bob randomly picks an integer b , and sends Alice x^b mod p .
- \bullet Alice and Bob both compute x^{ab} mod p and use this as a shared secret key.
	- Alice computes $((x^{b} \mod p)^{a} \mod p) = (x^{ab} \mod p).$
	- Bob computes $((x^a \bmod p)^b \bmod p) = (x^{ab} \bmod p)$.

Modular Multiplication Groups

- Multiplication modulo a prime p forms a group:
	- There's an **identity** 1 such that $x * 1 = x$.
	- Each element x has an **inverse** x^{-1} such that $x * x^{-1} = 1$.
	- The **operation** $*$ is associative: $x * (y * z) = (x * y) * z$.
- The **order** |x| of x is the smallest *n* such that $x^n = 1$.
- **Example:** Multiplication modulo 7:

Group Examples

• Number groups

- Addition of integers $\{ \ldots, -2, -1, 0, 1, 2, \ldots \}.$
- Multiplication of non-zero real numbers.

• Permutation groups (group operation is composition)

- Substitution ciphers.
- Card shuffles $(|G| = 52!$, $|r$ iffle $| = 7$).
- Symmetry groups of regular polygons.
- Rubik's cube.

• Product groups $G \times H$

 $(x_1, y_1) *_{G \times H} (x_2, y_2) = (x_1 *_{G} x_2, y_1 *_{H} y_2)$

$$
\bullet \ \ 1_{G\times H}=(1_G,1_H).
$$

•
$$
(x, y)^{-1} = (x^{-1}, y^{-1}).
$$

Group Exponentiation

- Given a group G, we can efficiently compute exponentiation x^n using repeated squaring:
	- **1** If $n = 0$ then return the group identity,
	- **2** else if *n* is even then return $(x * x)^{n/2}$,
	- 3) else return $x * (x^{n-1})$.
- Computing x^n using repeated squaring requires $O(\log n)$ group operations.

The Discrete Logarithm Problem

- Given a group G, the Discrete Logarithm Problem tests the difficulty of inverting exponentiation:
	- Given $g, h \in G$, find a k such that $g^k = h$.
- The difficulty of this problem depends on the group G.
	- \bullet For addition modulo p, the problem can be solved in $O(\log |G|)$ time.
	- \bullet For an ideal black-box group G, solving the discrete logarithm problem requires $O(\sqrt{|G|})$ group operations.
- \bullet For multiplication modulo p, the problem is hard.
	- But: The best known algorithm can solve it faster than black-box.
	- And: Odlyzko (1991) broke the secure identification option of the Sun Network File System which used a prime of 192 bits.

Group Encryption: ElGamal

The **ElGamal encryption algorithm** can use any instance $g^k = h$ of the Discrete Logarithm Problem.

- \bullet Alice obtains a copy of Bob's public key (g, h) .
- ² Alice generates a randomly chosen natural number $i\in\{1,\ldots,|G|-1\}$ and computes $a=g^i$ and $b=h^im.$
- Alice sends the encrypted message (a, b) to Bob.
- \bullet Bob receives the encrypted message (a, b) . To recover the message m he uses his private key k to compute

$$
a^{-k}b = (g^i)^{-k}h^im = g^{-ik}(g^k)^im = g^{ki-ik}m = m.
$$

- A group H is a **subgroup** of a group G if $H \subseteq G$ and H has the same operation, inverse and identity.
	- **Example:** Integer addition is a subgroup of real addition.
	- Example: Substitution ciphers mapping $A \mapsto A$ are a subgroup of all substitution ciphers.
	- Non-example: Substitution ciphers mapping $A \mapsto B$ are not a subgroup of anything (no identity, not a group).
- \bullet A group G has two trivial subgroups:
	- the whole group G ; and
	- the subgroup consisting of just the identity.

Lagrange's Theorem

- **Theorem:** If H is a subgroup of a finite group G, then $|H|$ divides $|G|$.
	- Proof: Define the equivalence relation $g_1 \sim g_2$ iff there exists $h \in H$ such that $h * g_1 = g_2$.
- Corollary: For each element $g \in G$, |g| divides |G|.
	- Proof: Each group element $g \in G$ generates a subgroup ${g^n | 0 \le n < |g|}.$
- **Corollary:** For each element $g \in G$, $g^{|G|}$ is the identity.
	- **Proof:** $g^{|G|} = g^{|g|k} = (g^{|g|})^k = 1^k = 1$.
- **1** Bob chooses two large primes p, q and computes $n = pq$.
- **2** Bob chooses an integer e and computes d such that

$$
ed \bmod (p-1)(q-1)=1.
$$

- \bullet Bob publishes (n, e) as his public key.
- \triangle Alice takes her message m and computes $c = m^e$ mod n.
- **6** Alice sends c to Bob.
- **6** Bob receives c and computes

$$
cd \bmod n = (me \bmod n)d \bmod n = med \bmod n = m.
$$

"The Magic Words are Squeamish Ossifrage"

- Chinese Remainder Theorem: Multiplication modulo *n* is the **product group** of multiplication modulo p and multiplication modulo q.
- \bullet The group of multiplication modulo a prime p consists of elements $\{1, \ldots, p-1\}$, and thus has size $p-1$.
- \bullet The group G of multiplication modulo *n* therefore has size $(p-1)(q-1)$, and so

$$
m^{ed} \mod n = m^{k(p-1)(q-1)+1} \mod n
$$

= $m^{k|G|+1} \mod n$
= $(m^{|G|} \mod n)^k m \mod n$
= $1^k m \mod n$
= $m \square$

- Fact: Given a prime p such that p mod $4 = 3$, exactly one of x and $-x$ has square roots. If x has square roots, they can be computed by $\pm (x^{(p+1)/4} \mod p)$.
- A number *n* is a **Blum integer** if $n = pq$ with p, q primes equal to 3 modulo 4.
- **Theorem:** If n is a Blum integer and x is a square mod n, then x has four square roots and exactly one of these is itself a square mod n . Call this unique square root the **principal** square root.
- **• Theorem:** Computing square roots modulo *n* is RP-equivalent to factoring n.

Bit Commitment

This protocol allows Alice and Bob to fairly flip a coin over a network.

- Alice randomly picks a large Blum integer $n = pq$ and an integer x.
- **2** Alice computes $y = x^2$ mod *n*, and $z = y^2$ mod *n*.
- \bullet Alice sends Bob (n, z) .
- \bullet Bob has to guess whether y lies in the range $H = (0, \frac{1}{2})$ $\frac{1}{2}n$) or the range $\mathcal{T} = (\frac{1}{2}n, n)$.
- \bullet Bob randomly picks H or T and sends his guess to Alice.
- Alice sends Bob (p, q, x) .

- \bullet Let Alice have a secret: a Hamilton cycle H in a large graph G.
- The bit commitment protocol can be built upon to allow Alice to prove she knows the secret to Bob, but without revealing it:
	- \bullet Alice randomly permutes all the vertex labels on G to create a new graph G' .
	- ² She then makes two commitments: the vertex pairing she used $f: G \to G'$; and the new Hamilton cycle $H' = f(H)$.
	- \bullet She sends G' and these commitments to Bob.
	- \bullet Bob randomly chooses either H' or f , and sends his choice to Alice.
	- **•** Alice sends Bob the information he needs to reveal his choice.
- Elliptic Curve Cryptography
	- First proposed in 1985 by Koblitz and Miller.
	- Part of the 2005 NSA Suite B set of cryptographic algorithms.
	- Certicom the most prominent vendor, but there are many implementations.
	- Advantages over standard public key cryptography:
		- Known theoretical attacks much less effective.
		- so requires much shorter keys for the same security,
		- leading to reduced bandwidth and greater efficiency.
	- However, there are also disadvantages:
		- The algorithms are more complex, so it's harder to implement them correctly.
		- Patent uncertainty surrounding many implementation techniques.

• An elliptic curve is the set of points (x, y) satisfying an equation of the form

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.
$$

- Despite the name, they don't look like ellipses!
- Elliptic curves are used in number theory: Wiles proved Fermat's Last Theorem by showing that the elliptic curve

$$
y^2 = x(x - a^n)(x + b^n)
$$

generated by a counter-example $a^n + b^n = c^n$ cannot exist.

[Group Introduction](#page-3-0) **[Inside RSA](#page-9-0)** [Case Study](#page-13-0) Case Case Introduction Curves

Example Elliptic Curve $y^2 + y = x^3 - x$

[Group Introduction](#page-3-0) **[Case Study](#page-13-0) Case Study** Case Study Case Study **[Elliptic Curves](#page-16-0)**

2

Example Elliptic Curve $y^2 = x^3 - \frac{1}{2}$ $\frac{1}{2}x + \frac{1}{2}$

[Group Introduction](#page-3-0) **[Inside RSA](#page-9-0)** [Case Study](#page-13-0) Case Communication [Elliptic Curves](#page-16-0)

Example Elliptic Curve $y^2 = x^3 - \frac{4}{3}$ $\frac{4}{3}x + \frac{16}{27}$ 27

[Group Introduction](#page-3-0) **[Case Study](#page-13-0) Case Study** Case Study Case Study **[Elliptic Curves](#page-16-0)**

Example Elliptic Curve $y^2 = x^3$

- Fact: The points (x, y) satisfying the elliptic curve equation form a group.
- It's possible to 'add' two points on an elliptic curve to get a third point on the curve.
- \bullet The identity is a special zero point $\mathcal O$ infinitely far up the $y - axis$.

[Group Introduction](#page-3-0) **[Case Study](#page-13-0) Case Study** Case Study Case Study **[Elliptic Curves](#page-16-0)**

Example Elliptic Curve $y^2 = x^3 - x$

[Group Introduction](#page-3-0) **[Inside RSA](#page-9-0)** [Case Study](#page-13-0) Case Case Communication Curves

Example Elliptic Curve $y^2 = x^3 - x$: Addition

[Group Introduction](#page-3-0) **[Inside RSA](#page-9-0)** [Case Study](#page-13-0) Case Communication [Elliptic Curves](#page-16-0)

Example Elliptic Curve $y^2 = x^3 - x$: Doubling

[Group Introduction](#page-3-0) **[Inside RSA](#page-9-0)** [Case Study](#page-13-0) Case Communication [Elliptic Curves](#page-16-0)

Example Elliptic Curve $y^2 = x^3 - x$: Negation

Elliptic Curve Cryptography

- The graphs showed elliptic curves points (x, y) where x and y were real numbers.
- But the elliptic curve operations can be defined for any underlying field.
- Instead of the geometric definition, use algebra:

$$
-(x,y)=(x,-y-a_1x-a_3).
$$

- Elliptic curve cryptography uses finite fields $GF(p^n)$.
	- GF(p) is the field $\{0, \ldots, p-1\}$ where all arithmetic is performed modulo the prime p.
	- $GF(2ⁿ)$ is the field of polynomials where all the coefficients are either 0 or 1.