Visual Mathematics "I See Dead Easy Proofs"

Joe Hurd Øgilith

Ignite Portland 9 23 September 2010

 $R_1 = \beta_{11} P_1$ F2 g2= \$2, P, + \$2

Mathematics is no more about formulas than astronomy is about telescopes

 $\begin{array}{l} \operatorname{let} f_c(z) = z^2 + c \text{ in} \\ \left\{ z \mid \lim_{n \to \infty} f_z^n(0) \not\rightarrow \infty \right\} \end{array} \leftarrow$

Warm-up puzzle

25 x 24 x

Geometry

Number Theory

. . .

$1 + 2 + 3 + \cdots + n = ?$

$1 + 2 + 3 + \cdots + n = \frac{1}{2} \times n \times (n + 1)$

▶ n + 1 -----

Pythagoras' Theorem

blue area

red area

=

For this proof you will need:

 $1 \ge (a+b)$ -sided square

4 x right-angled triangle

Assemble the proof (twice):

Left over space = blue area Left over space = red area

Assemble the proof (twice):

Left over space = blue area Left over space = red area

Thank you for your attention

